Suppr超能文献

基于支持向量机和舌象的糖尿病诊断方法

Diagnostic Method of Diabetes Based on Support Vector Machine and Tongue Images.

作者信息

Zhang Jianfeng, Xu Jiatuo, Hu Xiaojuan, Chen Qingguang, Tu Liping, Huang Jingbin, Cui Ji

机构信息

Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

出版信息

Biomed Res Int. 2017;2017:7961494. doi: 10.1155/2017/7961494. Epub 2017 Jan 4.

Abstract

. The purpose of this research is to develop a diagnostic method of diabetes based on standardized tongue image using support vector machine (SVM). Tongue images of 296 diabetic subjects and 531 nondiabetic subjects were collected by the TDA-1 digital tongue instrument. Tongue body and tongue coating were separated by the division-merging method and chrominance-threshold method. With extracted color and texture features of the tongue image as input variables, the diagnostic model of diabetes with SVM was trained. After optimizing the combination of SVM kernel parameters and input variables, the influences of the combinations on the model were analyzed. . After normalizing parameters of tongue images, the accuracy rate of diabetes predication was increased from 77.83% to 78.77%. The accuracy rate and area under curve (AUC) were not reduced after reducing the dimensions of tongue features with principal component analysis (PCA), while substantially saving the training time. During the training for selecting SVM parameters by genetic algorithm (GA), the accuracy rate of cross-validation was grown from 72% or so to 83.06%. Finally, we compare with several state-of-the-art algorithms, and experimental results show that our algorithm has the best predictive accuracy. The diagnostic method of diabetes on the basis of tongue images in Traditional Chinese Medicine (TCM) is of great value, indicating the feasibility of digitalized tongue diagnosis.

摘要

本研究旨在基于标准化舌象利用支持向量机(SVM)开发一种糖尿病诊断方法。通过TDA - 1数字舌象仪收集了296例糖尿病患者和531例非糖尿病患者的舌象。采用分割合并法和色度阈值法分离舌体和舌苔。以提取的舌象颜色和纹理特征作为输入变量,训练SVM糖尿病诊断模型。在优化SVM核参数和输入变量的组合后,分析了这些组合对模型的影响。在对舌象参数进行归一化后,糖尿病预测准确率从77.83%提高到78.77%。采用主成分分析(PCA)降低舌象特征维度后,准确率和曲线下面积(AUC)没有降低,同时大幅节省了训练时间。在通过遗传算法(GA)选择SVM参数的训练过程中,交叉验证的准确率从72%左右提高到83.06%。最后,我们与几种先进算法进行比较,实验结果表明我们的算法具有最佳的预测准确率。中医基于舌象的糖尿病诊断方法具有重要价值,表明了数字化舌诊的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f955/5241479/377faa5c78cb/BMRI2017-7961494.001.jpg

相似文献

1
Diagnostic Method of Diabetes Based on Support Vector Machine and Tongue Images.
Biomed Res Int. 2017;2017:7961494. doi: 10.1155/2017/7961494. Epub 2017 Jan 4.
3
Classification of fruits using computer vision and a multiclass support vector machine.
Sensors (Basel). 2012;12(9):12489-505. doi: 10.3390/s120912489. Epub 2012 Sep 13.
4
Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: A first comparative study of its kind.
Comput Methods Programs Biomed. 2016 Apr;126:98-109. doi: 10.1016/j.cmpb.2015.11.013. Epub 2016 Jan 20.
6
Principal component vector rotation of the tongue color spectrum to predict "Mibyou" (disease-oriented state).
Int J Comput Assist Radiol Surg. 2011 Mar;6(2):209-15. doi: 10.1007/s11548-010-0506-8. Epub 2010 Jun 24.
7
A multi-step approach for tongue image classification in patients with diabetes.
Comput Biol Med. 2022 Oct;149:105935. doi: 10.1016/j.compbiomed.2022.105935. Epub 2022 Aug 13.
8
Automated tongue diagnosis on the smartphone and its applications.
Comput Methods Programs Biomed. 2019 Jun;174:51-64. doi: 10.1016/j.cmpb.2017.12.029. Epub 2017 Dec 24.
10
Development of a tongue image-based machine learning tool for the diagnosis of gastric cancer: a prospective multicentre clinical cohort study.
EClinicalMedicine. 2023 Feb 6;57:101834. doi: 10.1016/j.eclinm.2023.101834. eCollection 2023 Mar.

引用本文的文献

2
Interplay of RNA mA Modification-Related Geneset in Pan-Cancer.
Biomedicines. 2024 Sep 27;12(10):2211. doi: 10.3390/biomedicines12102211.
9
A lung cancer risk warning model based on tongue images.
Front Physiol. 2023 Jun 1;14:1154294. doi: 10.3389/fphys.2023.1154294. eCollection 2023.
10
Application of machine learning in Chinese medicine differentiation of dampness-heat pattern in patients with type 2 diabetes mellitus.
Heliyon. 2023 Feb 13;9(2):e13289. doi: 10.1016/j.heliyon.2023.e13289. eCollection 2023 Feb.

本文引用的文献

1
The association between arterial stiffness and tongue manifestations of blood stasis in patients with type 2 diabetes.
BMC Complement Altern Med. 2016 Aug 27;16(1):324. doi: 10.1186/s12906-016-1308-5.
2
Computer-Aided Diagnosis of Micro-Malignant Melanoma Lesions Applying Support Vector Machines.
Biomed Res Int. 2016;2016:4381972. doi: 10.1155/2016/4381972. Epub 2016 Jun 13.
4
Color Correction Parameter Estimation on the Smartphone and Its Application to Automatic Tongue Diagnosis.
J Med Syst. 2016 Jan;40(1):18. doi: 10.1007/s10916-015-0387-z. Epub 2015 Nov 2.
5
Advances in Patient Classification for Traditional Chinese Medicine: A Machine Learning Perspective.
Evid Based Complement Alternat Med. 2015;2015:376716. doi: 10.1155/2015/376716. Epub 2015 Jul 12.
6
A Comparative Study of Contemporary Color Tongue Image Extraction Methods Based on HSI.
Int J Biomed Imaging. 2014;2014:534507. doi: 10.1155/2014/534507. Epub 2014 Nov 20.
7
Tongue color analysis for medical application.
Evid Based Complement Alternat Med. 2013;2013:264742. doi: 10.1155/2013/264742. Epub 2013 Apr 22.
8
Automated Tongue Feature Extraction for ZHENG Classification in Traditional Chinese Medicine.
Evid Based Complement Alternat Med. 2012;2012:912852. doi: 10.1155/2012/912852. Epub 2012 May 31.
9
Classification of hyperspectral medical tongue images for tongue diagnosis.
Comput Med Imaging Graph. 2007 Dec;31(8):672-8. doi: 10.1016/j.compmedimag.2007.07.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验