Suppr超能文献

向非信息通信技术领域研究人员引入高性能计算的探索性研究:广泛采用可能需要机构战略。

Exploratory study of introducing HPC to non-ICT researchers: institutional strategy is possibly needed for widespread adaption.

作者信息

Ferdinandy Bence, Guerrero-Higueras Ángel Manuel, Verderber Éva, Rodríguez-Lera Francisco Javier, Miklósi Ádám

机构信息

MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary.

Robotics Group, Department of Mechanical, Computer Science, and Aerospace Engineering, University of León, León, Spain.

出版信息

J Supercomput. 2021;77(5):4317-4331. doi: 10.1007/s11227-020-03438-0. Epub 2020 Sep 28.

Abstract

Machine learning algorithms are becoming more and more useful in many fields of science, including many areas where computational methods are rarely used. High-performance Computing (HPC) is the most powerful solution to get the best results using these algorithms. HPC requires various skills to use. Acquiring this knowledge might be intimidating and take a long time for a researcher with small or no background in information and communications technologies (ICTs), even if the benefits of such knowledge is evident for the researcher. In this work, we aim to assess how a specific method of introducing HPC to such researchers enables them to start using HPC. We gave talks to two groups of non-ICT researchers that introduced basic concepts focusing on the necessary practical steps needed to use HPC on a specific cluster. We also offered hands-on trainings for one of the groups which aimed to guide participants through the first steps of using HPC. Participants filled out questionnaires partly based on Kirkpatrick's training evaluation model before and after the talk, and after the hands-on training. We found that the talk increased participants' self-reported likelihood of using HPC in their future research, but this was not significant for the group where participation was voluntary. On the contrary, very few researchers participated in the hands-on training, and for these participants neither the talk, nor the hands-on training changed their self-reported likelihood of using HPC in their future research. We argue that our findings show that academia and researchers would benefit from an environment that not only expects researchers to train themselves, but provides structural support for acquiring new skills.

摘要

机器学习算法在许多科学领域正变得越来越有用,包括许多很少使用计算方法的领域。高性能计算(HPC)是使用这些算法获得最佳结果的最强大解决方案。使用HPC需要各种技能。对于在信息和通信技术(ICT)方面背景较少或没有背景的研究人员来说,获取这些知识可能令人生畏且需要很长时间,即使这些知识对研究人员的好处是显而易见的。在这项工作中,我们旨在评估将HPC引入此类研究人员的一种特定方法如何使他们开始使用HPC。我们为两组非ICT研究人员进行了讲座,介绍了侧重于在特定集群上使用HPC所需的必要实际步骤的基本概念。我们还为其中一组提供了实践培训,旨在指导参与者完成使用HPC的第一步。参与者在讲座前、讲座后以及实践培训后填写了部分基于柯克帕特里克培训评估模型的问卷。我们发现,讲座提高了参与者在未来研究中使用HPC的自我报告可能性,但对于自愿参与的小组来说,这并不显著。相反,很少有研究人员参加实践培训,对于这些参与者来说,讲座和实践培训都没有改变他们在未来研究中使用HPC的自我报告可能性。我们认为,我们的研究结果表明,学术界和研究人员将受益于这样一种环境,即不仅期望研究人员自我培训,而且为获取新技能提供结构性支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee6b/7521077/6762b1a04050/11227_2020_3438_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验