Suppr超能文献

工艺安全和风险管理方法如何指导大流行风险管理?

How can process safety and a risk management approach guide pandemic risk management?

作者信息

Alauddin Md, Islam Khan Md Aminul, Khan Faisal, Imtiaz Syed, Ahmed Salim, Amyotte Paul

机构信息

Centre for Risk, Integrity and Safety Engineering (C-RISE) Faculty of Engineering and Applied Science Memorial University of Newfoundland, St. John's, NL, Canada.

Department of Process Engineering and Applied Science Dalhousie University, Halifax, NS, Canada.

出版信息

J Loss Prev Process Ind. 2020 Nov;68:104310. doi: 10.1016/j.jlp.2020.104310. Epub 2020 Sep 30.

Abstract

The coronavirus disease (COVID-19) brought the world to a halt in March 2020. Various prediction and risk management approaches are being explored worldwide for decision making. This work adopts an advanced mechanistic model and utilizes tools for process safety to propose a framework for risk management for the current pandemic. A parameter tweaking and an artificial neural network-based parameter learning model have been developed for effective forecasting of the dynamic risk. Monte Carlo simulation was used to capture the randomness of the model parameters. A comparative analysis of the proposed methodologies has been carried out by using the susceptible, exposed, infected, quarantined, recovered, deceased (SEIQRD) model. A SEIQRD model was developed for four distinct locations: Italy, Germany, Ontario, and British Columbia. The learning-based approach resulted in better outcomes among the models tested in the present study. The layer of protection analysis is a useful framework to analyze the effect of different safety measures. This framework is used in this work to study the effect of non-pharmaceutical interventions on pandemic risk. The risk profiles suggest that a stage-wise releasing scenario is the most suitable approach with negligible resurgence. The case study provides valuable insights to practitioners in both the health sector and the process industries to implement advanced strategies for risk assessment and management. Both sectors can benefit from each other by using the mathematical models and the management tools used in each, and, more importantly, the lessons learned from crises.

摘要

2020年3月,冠状病毒病(COVID-19)使世界陷入停滞。世界各地正在探索各种预测和风险管理方法以用于决策。这项工作采用了一种先进的机理模型,并利用过程安全工具来提出针对当前大流行的风险管理框架。已经开发了一种参数调整和基于人工神经网络的参数学习模型,用于有效预测动态风险。蒙特卡洛模拟用于捕捉模型参数的随机性。通过使用易感、暴露、感染、隔离、康复、死亡(SEIQRD)模型,对所提出的方法进行了比较分析。针对意大利、德国、安大略省和不列颠哥伦比亚省这四个不同地点开发了SEIQRD模型。在本研究中测试的模型中,基于学习的方法产生了更好的结果。保护层分析是分析不同安全措施效果的有用框架。在这项工作中使用该框架来研究非药物干预措施对大流行风险的影响。风险概况表明,分阶段解除管控的方案是最合适的方法,疫情反弹可忽略不计。该案例研究为卫生部门和流程工业的从业者实施先进的风险评估和管理策略提供了宝贵的见解。两个部门都可以通过使用各自的数学模型和管理工具,更重要的是,从危机中吸取的教训,相互受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c04/7525359/c2710231dbdc/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验