Bai Han, Wang Li, Li Wenhui, Liu Xuhong, Xia Yaoxiong, Chang Li
Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, Yunnan, China.
Dose Response. 2020 Sep 22;18(3):1559325820961721. doi: 10.1177/1559325820961721. eCollection 2020 Jul-Sep.
To test the effectiveness of quantitative linear-quadratic-based (qLQB) model on evaluating irradiation-induced liver injury (ILI) and establish the relation between the damaged ratio/percent (DRP) in qLQB model and normal tissue complication probility (NTCP).
We established the qLQB model to calculate the ratio/percent (RP) between damaged cell/functional subunit (FSU) and entire cell/FSU of liver for radiation dose response, tested the qLQB against the Lyman-Kutcher-Burman (LKB) model, and established relation between the RP and NTCP through analyzing the dose of 32 patients with cancer of abdominal cavity who were treated with radiation therapy at our department. Based on varied α/β and varied parameters for NTCP, we put the calculated results into varied arrays for the next analysis. We named the 2 groups of RPs: RP1 (α/β = 3.0, α = 0.03) and RP2 (α/β = 8.0, α = 0.26), and named the 2 groups of NTCPs: NTCP1 (n = 0.32, m = 0.15, TD50(1) = 4000 cGy) and NTCP2 (n = 1.10, m = 0.28, TD50(1) = 4050 cGy).
Spearman correlation analysis was used to analyze the correlations among the groups, the results were as follows: RP1 vs NTCP1, rs = 0.83827, p < 0.0001; RP1 vs NTCP2, rs = 0.83827, p < 0.0001; RP2 vs NTCP2, rs = 0.79289, p < 0.0001; and RP2 vs NTCP1, rs = 0.79289, p < 0.0001.
There is a significant correlation between RP value and NTCP for evaluating ILI, and there is no difference between qLQB model and LKB model on evaluating ILI.
测试基于定量线性-二次模型(qLQB)评估辐射诱导肝损伤(ILI)的有效性,并建立qLQB模型中的损伤比例(DRP)与正常组织并发症概率(NTCP)之间的关系。
我们建立qLQB模型以计算肝脏中受损细胞/功能亚单位(FSU)与整个细胞/FSU之间的比例(RP)用于辐射剂量反应,将qLQB模型与莱曼-库彻-伯曼(LKB)模型进行比较,并通过分析在我院接受放射治疗的32例腹腔癌症患者的剂量来建立RP与NTCP之间的关系。基于不同的α/β值和不同的NTCP参数,我们将计算结果放入不同的数组中进行下一步分析。我们将两组RP命名为:RP1(α/β = 3.0,α = 0.03)和RP2(α/β = 8.0,α = 0.26),并将两组NTCP命名为:NTCP1(n = 0.32,m = 0.15,TD50(1) = 4000 cGy)和NTCP2(n = 1.10,m = 0.28,TD50(1) = 4050 cGy)。
采用Spearman相关性分析来分析各组之间的相关性,结果如下:RP1与NTCP1,rs = 0.83827,p < 0.0001;RP1与NTCP2,rs = 0.83827,p < 0.0001;RP2与NTCP2,rs = 0.79289,p < 0.0001;RP2与NTCP1,rs = 0.79289,p < 0.0001。
在评估ILI时,RP值与NTCP之间存在显著相关性,并且在评估ILI方面,qLQB模型与LKB模型之间没有差异。