Suppr超能文献

基于闪光与运动混合编码的脑机接口方法

Brain-computer interface method based on light-flashing and motion hybrid coding.

作者信息

Yan Wenqiang, Xu Guanghua

机构信息

School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.

State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China.

出版信息

Cogn Neurodyn. 2020 Oct;14(5):697-708. doi: 10.1007/s11571-020-09616-3. Epub 2020 Jul 16.

Abstract

The human best response frequency band for steady-state visual evoked potential stimulus is limited. This results in a reduced number of encoded targets. To circumvent this, we proposed a brain-computer interface (BCI) method based on light-flashing and motion hybrid coding. The hybrid paradigm pattern consisted of a circular light-flashing pattern and a motion pattern located in the inner ring of light-flashing pattern. The motion and light-flashing patterns had different frequencies. This study used five frequencies to encode nine targets. The motion frequency and the light-flashing frequency of the hybrid paradigm consisted of two frequencies in five frequencies. The experimental results showed that the hybrid paradigm could induce stable motion frequency, light-flashing frequency and its harmonic components. Moreover, the modulation between motion and light-flashing was weak. The average accuracy was 92.96% and the information transfer rate was 26.10 bits/min. The experimental results showed that the proposed method could be considered for practical BCI systems.

摘要

人类对稳态视觉诱发电位刺激的最佳反应频段是有限的。这导致编码目标数量减少。为了规避这一问题,我们提出了一种基于闪光和运动混合编码的脑机接口(BCI)方法。混合范式模式由圆形闪光模式和位于闪光模式内环的运动模式组成。运动模式和闪光模式具有不同的频率。本研究使用五个频率对九个目标进行编码。混合范式的运动频率和闪光频率由五个频率中的两个频率组成。实验结果表明,混合范式能够诱导出稳定的运动频率、闪光频率及其谐波成分。此外,运动和闪光之间的调制较弱。平均准确率为92.96%,信息传输率为26.10比特/分钟。实验结果表明,所提出的方法可应用于实际的BCI系统。

相似文献

1
Brain-computer interface method based on light-flashing and motion hybrid coding.
Cogn Neurodyn. 2020 Oct;14(5):697-708. doi: 10.1007/s11571-020-09616-3. Epub 2020 Jul 16.
2
A novel multiple time-frequency sequential coding strategy for hybrid brain-computer interface.
Front Hum Neurosci. 2022 Jul 29;16:859259. doi: 10.3389/fnhum.2022.859259. eCollection 2022.
3
A multi-source co-frequency stimulus method for electroencephalogram (EEG) enhancement.
Biomed Tech (Berl). 2020 Jun 29. doi: 10.1515/bmt-2019-0262.
4
A novel motion coupling coding method for brain-computer interfaces.
Biomed Tech (Berl). 2020 Oct 25;65(5):531-541. doi: 10.1515/bmt-2019-0257.
5
Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces.
J Neural Eng. 2015 Jun;12(3):036006. doi: 10.1088/1741-2560/12/3/036006. Epub 2015 Apr 15.
6
Brain response to luminance-based and motion-based stimulation using inter-modulation frequencies.
PLoS One. 2017 Nov 15;12(11):e0188073. doi: 10.1371/journal.pone.0188073. eCollection 2017.
7
Brain-computer interface based on intermodulation frequency.
J Neural Eng. 2013 Dec;10(6):066009. doi: 10.1088/1741-2560/10/6/066009. Epub 2013 Oct 18.
8
A Light Spot Humanoid Motion Paradigm Modulated by the Change of Brightness to Recognize the Stride Motion Frequency.
Front Hum Neurosci. 2018 Oct 15;12:377. doi: 10.3389/fnhum.2018.00377. eCollection 2018.
9
Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
J Neurosci Methods. 2016 Jan 30;258:104-13. doi: 10.1016/j.jneumeth.2015.11.001. Epub 2015 Nov 10.
10
Effects of fatigue on steady state motion visual evoked potentials: Optimised stimulus parameters for a zoom motion-based brain-computer interface.
Comput Methods Programs Biomed. 2020 Nov;196:105650. doi: 10.1016/j.cmpb.2020.105650. Epub 2020 Jul 9.

引用本文的文献

1
A novel noninvasive brain-computer interface by imagining isometric force levels.
Cogn Neurodyn. 2023 Aug;17(4):975-983. doi: 10.1007/s11571-022-09875-2. Epub 2022 Sep 5.
2
A multi-modal brain-computer interface based on threshold discrimination and its application in wheelchair control.
Cogn Neurodyn. 2022 Oct;16(5):1123-1133. doi: 10.1007/s11571-021-09779-7. Epub 2022 Jan 24.

本文引用的文献

1
Mental fatigue level detection based on event related and visual evoked potentials features fusion in virtual indoor environment.
Cogn Neurodyn. 2019 Jun;13(3):271-285. doi: 10.1007/s11571-019-09523-2. Epub 2019 Jan 29.
2
Four Novel Motion Paradigms Based on Steady-State Motion Visual Evoked Potential.
IEEE Trans Biomed Eng. 2018 Aug;65(8):1696-1704. doi: 10.1109/TBME.2017.2762690. Epub 2017 Oct 13.
3
Utilizing Retinotopic Mapping for a Multi-Target SSVEP BCI With a Single Flicker Frequency.
IEEE Trans Neural Syst Rehabil Eng. 2017 Jul;25(7):1026-1036. doi: 10.1109/TNSRE.2017.2666479. Epub 2017 Apr 25.
4
Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis.
IEEE Trans Biomed Eng. 2018 Jan;65(1):104-112. doi: 10.1109/TBME.2017.2694818. Epub 2017 Apr 19.
6
A novel stimulation method for multi-class SSVEP-BCI using intermodulation frequencies.
J Neural Eng. 2017 Apr;14(2):026013. doi: 10.1088/1741-2552/aa5989. Epub 2017 Jan 16.
7
Steady-State Motion Visual Evoked Potential (SSMVEP) Based on Equal Luminance Colored Enhancement.
PLoS One. 2017 Jan 6;12(1):e0169642. doi: 10.1371/journal.pone.0169642. eCollection 2017.
8
Frequency- and Phase Encoded SSVEP Using Spatiotemporal Beamforming.
PLoS One. 2016 Aug 3;11(8):e0159988. doi: 10.1371/journal.pone.0159988. eCollection 2016.
9
An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas.
IEEE Trans Neural Syst Rehabil Eng. 2017 Jan;25(1):11-18. doi: 10.1109/TNSRE.2016.2573819. Epub 2016 May 30.
10
Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces.
J Neural Eng. 2015 Jun;12(3):036006. doi: 10.1088/1741-2560/12/3/036006. Epub 2015 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验