Suppr超能文献

基于虚拟室内环境中事件相关电位与视觉诱发电位特征融合的精神疲劳水平检测

Mental fatigue level detection based on event related and visual evoked potentials features fusion in virtual indoor environment.

作者信息

Lamti Hachem A, Ben Khelifa Mohamed Moncef, Hugel Vincent

机构信息

1COnception de Systemes Mecaniques et Robotiques (COSMER) Laboratory, University of Toulon, Toulon, France.

2Impact de l'Activite Physique sur la Sante (IAPS) Laboratory, University of Toulon, Toulon, France.

出版信息

Cogn Neurodyn. 2019 Jun;13(3):271-285. doi: 10.1007/s11571-019-09523-2. Epub 2019 Jan 29.

Abstract

The purpose of this work is to set up a model that can estimate the mental fatigue of users based on the fusion of relevant features extracted from Positive 300 (P300) and steady state visual evoked potentials (SSVEP) measured by electroencephalogram. To this end, an experimental protocol describes the induction of P300, SSVEP and mental workload (which leads to mental fatigue by varying time-on-task) in different scenarios where environmental artifacts are controlled (obstacles number, obstacles velocities, ambient luminosity). Ten subjects took part in the experiment (with two suffering from cerebral palsy). Their mission is to navigate along a corridor from a starting point A to a goal point B where specific flickering stimuli are introduced to perform the P300 task. On the other hand, SSVEP task is elicited thanks to 10 Hz flickering lights. Correlated features are considered as inputs to fusion block which estimates mental workload. In order to deal with uncertainties and heterogeneity of P300 and SSVEP features, Dempster-Shafer (D-S) evidential reasoning is introduced. As the goal is to assess the reliability for the estimation of mental fatigue levels, D-S is compared to multi layer perception and linear discriminant analysis. The results show that D-S globally outperforms the other classifiers (although its performance significantly decreases between healthy and palsied groups). Finally we discuss the feasibility of such a fusion proposal in real life situation.

摘要

这项工作的目的是建立一个模型,该模型可以基于从脑电图测量的正300(P300)和稳态视觉诱发电位(SSVEP)中提取的相关特征融合来估计用户的精神疲劳。为此,一个实验方案描述了在控制环境伪影(障碍物数量、障碍物速度、环境亮度)的不同场景中诱发P300、SSVEP和精神工作量(通过改变任务时间导致精神疲劳)的过程。十名受试者参与了实验(其中两名患有脑瘫)。他们的任务是沿着走廊从起点A导航到终点B,在终点B引入特定的闪烁刺激以执行P300任务。另一方面,由于10Hz的闪烁灯光诱发了SSVEP任务。相关特征被视为融合模块的输入,该模块估计精神工作量。为了处理P300和SSVEP特征的不确定性和异质性,引入了Dempster-Shafer(D-S)证据推理。由于目标是评估精神疲劳水平估计的可靠性,将D-S与多层感知和线性判别分析进行了比较。结果表明,D-S总体上优于其他分类器(尽管其性能在健康组和瘫痪组之间显著下降)。最后,我们讨论了这种融合方案在现实生活中的可行性。

相似文献

6
A Hybrid Brain-Computer Interface Based on the Fusion of P300 and SSVEP Scores.一种基于P300与稳态视觉诱发电位分数融合的混合式脑机接口。
IEEE Trans Neural Syst Rehabil Eng. 2015 Jul;23(4):693-701. doi: 10.1109/TNSRE.2015.2403270. Epub 2015 Feb 20.

引用本文的文献

2
Objective assessment of cognitive fatigue: a bibliometric analysis.认知疲劳的客观评估:一项文献计量分析
Front Neurosci. 2024 Nov 1;18:1479793. doi: 10.3389/fnins.2024.1479793. eCollection 2024.
6
Fatigue Monitoring Through Wearables: A State-of-the-Art Review.通过可穿戴设备进行疲劳监测:最新技术综述
Front Physiol. 2021 Dec 15;12:790292. doi: 10.3389/fphys.2021.790292. eCollection 2021.
7
Neural mechanism of visual information degradation from retina to V1 area.视觉信息从视网膜到V1区降解的神经机制。
Cogn Neurodyn. 2021 Apr;15(2):299-313. doi: 10.1007/s11571-020-09599-1. Epub 2020 May 20.
9
BCI-Based Rehabilitation on the Stroke in Sequela Stage.基于脑机接口的脑卒中后遗症期康复治疗。
Neural Plast. 2020 Dec 13;2020:8882764. doi: 10.1155/2020/8882764. eCollection 2020.
10

本文引用的文献

2
Usage of drip drops as stimuli in an auditory P300 BCI paradigm.在听觉P300脑机接口范式中使用滴滴声作为刺激。
Cogn Neurodyn. 2018 Feb;12(1):85-94. doi: 10.1007/s11571-017-9456-y. Epub 2017 Nov 16.
8
Aesthetic preference recognition of 3D shapes using EEG.利用脑电图进行3D形状的审美偏好识别。
Cogn Neurodyn. 2016 Apr;10(2):165-73. doi: 10.1007/s11571-015-9363-z. Epub 2015 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验