Lamti Hachem A, Ben Khelifa Mohamed Moncef, Hugel Vincent
1COnception de Systemes Mecaniques et Robotiques (COSMER) Laboratory, University of Toulon, Toulon, France.
2Impact de l'Activite Physique sur la Sante (IAPS) Laboratory, University of Toulon, Toulon, France.
Cogn Neurodyn. 2019 Jun;13(3):271-285. doi: 10.1007/s11571-019-09523-2. Epub 2019 Jan 29.
The purpose of this work is to set up a model that can estimate the mental fatigue of users based on the fusion of relevant features extracted from Positive 300 (P300) and steady state visual evoked potentials (SSVEP) measured by electroencephalogram. To this end, an experimental protocol describes the induction of P300, SSVEP and mental workload (which leads to mental fatigue by varying time-on-task) in different scenarios where environmental artifacts are controlled (obstacles number, obstacles velocities, ambient luminosity). Ten subjects took part in the experiment (with two suffering from cerebral palsy). Their mission is to navigate along a corridor from a starting point A to a goal point B where specific flickering stimuli are introduced to perform the P300 task. On the other hand, SSVEP task is elicited thanks to 10 Hz flickering lights. Correlated features are considered as inputs to fusion block which estimates mental workload. In order to deal with uncertainties and heterogeneity of P300 and SSVEP features, Dempster-Shafer (D-S) evidential reasoning is introduced. As the goal is to assess the reliability for the estimation of mental fatigue levels, D-S is compared to multi layer perception and linear discriminant analysis. The results show that D-S globally outperforms the other classifiers (although its performance significantly decreases between healthy and palsied groups). Finally we discuss the feasibility of such a fusion proposal in real life situation.
这项工作的目的是建立一个模型,该模型可以基于从脑电图测量的正300(P300)和稳态视觉诱发电位(SSVEP)中提取的相关特征融合来估计用户的精神疲劳。为此,一个实验方案描述了在控制环境伪影(障碍物数量、障碍物速度、环境亮度)的不同场景中诱发P300、SSVEP和精神工作量(通过改变任务时间导致精神疲劳)的过程。十名受试者参与了实验(其中两名患有脑瘫)。他们的任务是沿着走廊从起点A导航到终点B,在终点B引入特定的闪烁刺激以执行P300任务。另一方面,由于10Hz的闪烁灯光诱发了SSVEP任务。相关特征被视为融合模块的输入,该模块估计精神工作量。为了处理P300和SSVEP特征的不确定性和异质性,引入了Dempster-Shafer(D-S)证据推理。由于目标是评估精神疲劳水平估计的可靠性,将D-S与多层感知和线性判别分析进行了比较。结果表明,D-S总体上优于其他分类器(尽管其性能在健康组和瘫痪组之间显著下降)。最后,我们讨论了这种融合方案在现实生活中的可行性。