Suppr超能文献

用于锥束X射线发光计算机断层扫描的自适应收缩重建框架

Adaptive shrinking reconstruction framework for cone-beam X-ray luminescence computed tomography.

作者信息

Zhang Haibo, Huang Xiaodong, Zhou Mingquan, Geng Guohua, He Xiaowei

机构信息

School of Information Sciences and Technology, Northwest University, Xi'an, Shannxi 710027, China.

Baoji Central Hospital, Baoji, Shannxi 710127, China.

出版信息

Biomed Opt Express. 2020 Jun 12;11(7):3717-3732. doi: 10.1364/BOE.393970. eCollection 2020 Jul 1.

Abstract

Cone-beam X-ray luminescence computed tomography (CB-XLCT) emerged as a novel hybrid technique for early detection of small tumors . However, severe ill-posedness is still a challenge for CB-XLCT imaging. In this study, an adaptive shrinking reconstruction framework without information is proposed for CB-XLCT. In reconstruction processing, the mesh nodes are automatically selected with higher probability to contribute to the distribution of target for imaging. Specially, an adaptive shrinking function is designed to automatically control the permissible source region at a multi-scale rate. Both 3D digital mouse and experiments were carried out to test the performance of our method. The results indicate that the proposed framework can dramatically improve the imaging quality of CB-XLCT.

摘要

锥形束X射线发光计算机断层扫描(CB-XLCT)作为一种用于早期检测小肿瘤的新型混合技术应运而生。然而,严重的不适定性仍然是CB-XLCT成像面临的一个挑战。在本研究中,针对CB-XLCT提出了一种无信息的自适应收缩重建框架。在重建过程中,网格节点被自动以更高的概率选择,以有助于成像目标的分布。特别地,设计了一种自适应收缩函数,以多尺度速率自动控制允许的源区域。进行了三维数字小鼠实验和实际实验来测试我们方法的性能。结果表明,所提出的框架可以显著提高CB-XLCT的成像质量。

相似文献

1
Adaptive shrinking reconstruction framework for cone-beam X-ray luminescence computed tomography.
Biomed Opt Express. 2020 Jun 12;11(7):3717-3732. doi: 10.1364/BOE.393970. eCollection 2020 Jul 1.
2
Cone beam x-ray luminescence computed tomography: a feasibility study.
Med Phys. 2013 Mar;40(3):031111. doi: 10.1118/1.4790694.
4
Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.
IEEE Trans Med Imaging. 2017 Jan;36(1):225-235. doi: 10.1109/TMI.2016.2603843. Epub 2016 Aug 26.
5
Cone-beam X-ray luminescence computed tomography based on MLEM with adaptive FISTA initial image.
Comput Methods Programs Biomed. 2023 Feb;229:107265. doi: 10.1016/j.cmpb.2022.107265. Epub 2022 Nov 23.
6
Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage.
J Biomed Opt. 2018 Feb;23(2):1-11. doi: 10.1117/1.JBO.23.2.026006.
7
Dual and Multi-Target Cone-Beam X-ray Luminescence Computed Tomography Based on the DeepCB-XLCT Network.
Bioengineering (Basel). 2024 Aug 28;11(9):874. doi: 10.3390/bioengineering11090874.
8
OPK_SNCA: Optimized prior knowledge via sparse non-convex approach for cone-beam X-ray luminescence computed tomography imaging.
Comput Methods Programs Biomed. 2022 Mar;215:106645. doi: 10.1016/j.cmpb.2022.106645. Epub 2022 Jan 18.
9
Spectral-resolved cone-beam X-ray luminescence computed tomography with principle component analysis.
Biomed Opt Express. 2018 May 30;9(6):2844-2858. doi: 10.1364/BOE.9.002844. eCollection 2018 Jun 1.

引用本文的文献

1
Dual and Multi-Target Cone-Beam X-ray Luminescence Computed Tomography Based on the DeepCB-XLCT Network.
Bioengineering (Basel). 2024 Aug 28;11(9):874. doi: 10.3390/bioengineering11090874.
2
SODL-IR-FISTA: sparse online dictionary learning with iterative reduction FISTA for cone-beam X-ray luminescence computed tomography.
Biomed Opt Express. 2024 Aug 12;15(9):5162-5179. doi: 10.1364/BOE.531828. eCollection 2024 Sep 1.

本文引用的文献

1
Three-way decision based reconstruction frame for fluorescence molecular tomography.
J Opt Soc Am A Opt Image Sci Vis. 2018 Nov 1;35(11):1814-1822. doi: 10.1364/JOSAA.35.001814.
2
Half Thresholding Pursuit Algorithm for Fluorescence Molecular Tomography.
IEEE Trans Biomed Eng. 2019 May;66(5):1468-1476. doi: 10.1109/TBME.2018.2874699. Epub 2018 Oct 8.
3
Sparse view cone beam X-ray luminescence tomography based on truncated singular value decomposition.
Opt Express. 2018 Sep 3;26(18):23233-23250. doi: 10.1364/OE.26.023233.
5
A hybrid clustering algorithm for multiple-source resolving in bioluminescence tomography.
J Biophotonics. 2018 Apr;11(4):e201700056. doi: 10.1002/jbio.201700056. Epub 2017 Nov 20.
6
Automatic selection of regularization parameters for dynamic fluorescence molecular tomography: a comparison of L-curve and U-curve methods.
Biomed Opt Express. 2016 Nov 9;7(12):5021-5041. doi: 10.1364/BOE.7.005021. eCollection 2016 Dec 1.
7
Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.
IEEE Trans Med Imaging. 2017 Jan;36(1):225-235. doi: 10.1109/TMI.2016.2603843. Epub 2016 Aug 26.
8
Reconstruction algorithm for fluorescence molecular tomography using sorted L-one penalized estimation.
J Opt Soc Am A Opt Image Sci Vis. 2015 Nov 1;32(11):1928-35. doi: 10.1364/JOSAA.32.001928.
9
A wavelet-based single-view reconstruction approach for cone beam x-ray luminescence tomography imaging.
Biomed Opt Express. 2014 Oct 9;5(11):3848-58. doi: 10.1364/BOE.5.003848. eCollection 2014 Nov 1.
10
Fast reconstruction of fluorescence molecular tomography via a permissible region extraction strategy.
J Opt Soc Am A Opt Image Sci Vis. 2014 Aug 1;31(8):1886-94. doi: 10.1364/JOSAA.31.001886.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验