Suppr超能文献

基于三分类决策的荧光分子断层成像重建框架

Three-way decision based reconstruction frame for fluorescence molecular tomography.

作者信息

Yi Huangjian, Jiao Pu, Li Xiaonan, Peng Jinye, He Xiaowei

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2018 Nov 1;35(11):1814-1822. doi: 10.1364/JOSAA.35.001814.

Abstract

Fluorescence molecular tomography (FMT) has been a promising imaging tool because it allows an accurate localizaton and quantitative analysis of the fluorophore distribution in animals. It, however, is still a challenge since its reconstruction suffers from severe ill-posedness. This paper introduces a reconstruction frame based on three-way decisions (TWD) for the inverse problem of FMT. On the first stage, a reconstruction result on the whole region is obtained by a certain reconstruction algorithm. With TWD, the recovered result has been divided into three regions: fluorescent target region, boundary region, and background region. On the second stage, the boundary region and fluorescent target region have been combined into the permissible region of the target. Then a new reconstruction on the permissible region has been carried out and a new recovered result is obtained. With TWD again, the new result has been classified into three pairwise disjoint regions. And the new fluorescent target region is the final reconstructed result. Both numerical simulation experiments and a real mouse experiment are carried out to validate the feasibility and potential of the presented reconstruction frame. The results indicate that the proposed reconstuction strategy based on TWD can provide a good performance in FMT reconstruction.

摘要

荧光分子断层成像(FMT)一直是一种很有前景的成像工具,因为它能够对动物体内荧光团的分布进行精确的定位和定量分析。然而,由于其重建存在严重的不适定性,它仍然是一个挑战。本文针对FMT反问题引入了一种基于三支决策(TWD)的重建框架。在第一阶段,通过某种重建算法获得整个区域的重建结果。利用TWD,将恢复结果划分为三个区域:荧光目标区域、边界区域和背景区域。在第二阶段,将边界区域和荧光目标区域合并为目标的允许区域。然后在允许区域上进行新的重建并获得新的恢复结果。再次利用TWD,将新结果划分为三个互不相交的区域。新的荧光目标区域就是最终的重建结果。通过数值模拟实验和真实小鼠实验来验证所提出重建框架的可行性和潜力。结果表明,基于TWD提出的重建策略在FMT重建中能够提供良好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验