Suppr超能文献

基于PET/MR成像的鼻咽癌影像组学分析及其与代谢参数的相关性

Radiomics Analysis and Correlation With Metabolic Parameters in Nasopharyngeal Carcinoma Based on PET/MR Imaging.

作者信息

Feng Qi, Liang Jiangtao, Wang Luoyu, Niu Jialing, Ge Xiuhong, Pang Peipei, Ding Zhongxiang

机构信息

Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Hangzhou Universal Medical Imaging Diagnostic Center, Hangzhou, China.

出版信息

Front Oncol. 2020 Sep 8;10:1619. doi: 10.3389/fonc.2020.01619. eCollection 2020.

Abstract

Accurate staging is of great importance in treatment selection for patients with nasopharyngeal carcinoma (NPC). The aims of this study were to construct radiomic models of NPC staging based on positron emission tomography (PET) and magnetic resonance (MR) images and to investigate the correlation between metabolic parameters and radiomic features. A total of 100 consecutive cases of NPC (70 in training and 30 in the testing cohort) with undifferentiated carcinoma confirmed pathologically were recruited. Metabolic parameters of the local lesions of NPC were measured. A total of 396 radiomic features based on PET and MRI images were calculated [including histogram, Haralick, shape factor, gray level co-occurrence matrix (GLCM), and run length matrix (RLM)] and selected [using maximum relevance and minimum redundancy (mRMR) and least shrinkage and selection operator (LASSO)], respectively. The logistic regression models were established according to these features. Finally, the relationship between the metabolic parameters and radiomic features was analyzed. We selected the nine most relevant radiomic features (six from MR images and three from PET images) from local NPC lesions. In the PET model, the area under the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, and the specificity of the training group were 0.84, 0.75, 0.90, and 0.69, respectively. In the MR model, those metrics were 0.85, 0.83, 0.75, and 0.86, respectively. Pearson's correlation analysis showed that the metabolic parameters had different degrees of correlation with the selected radiomic features. The PET and MR radiomic models were helpful in the diagnosis of NPC staging. There were correlations between the metabolic parameters and radiomic features of primary NPC based on PET/MR. In the future, PET/MR-based radiomic models, with further improvement and validation, can be a more useful and economical tool for predicting local invasion and distant metastasis of NPC.

摘要

准确分期对于鼻咽癌(NPC)患者的治疗选择至关重要。本研究的目的是基于正电子发射断层扫描(PET)和磁共振(MR)图像构建NPC分期的放射组学模型,并研究代谢参数与放射组学特征之间的相关性。共纳入100例经病理证实为未分化癌的连续NPC病例(训练组70例,测试组30例)。测量NPC局部病变的代谢参数。基于PET和MRI图像计算了总共396个放射组学特征[包括直方图、哈氏特征、形状因子、灰度共生矩阵(GLCM)和游程长度矩阵(RLM)],并分别使用最大相关最小冗余(mRMR)和最小绝对收缩和选择算子(LASSO)进行选择。根据这些特征建立逻辑回归模型。最后,分析代谢参数与放射组学特征之间的关系。我们从NPC局部病变中选择了九个最相关的放射组学特征(六个来自MR图像,三个来自PET图像)。在PET模型中,训练组的受试者工作特征(ROC)曲线下面积(AUC)、准确率、灵敏度和特异性分别为0.84、0.75、0.90和0.69。在MR模型中,这些指标分别为0.85、0.83、0.75和0.86。Pearson相关性分析表明,代谢参数与所选放射组学特征有不同程度的相关性。PET和MR放射组学模型有助于NPC分期的诊断。基于PET/MR的原发性NPC的代谢参数与放射组学特征之间存在相关性。未来,基于PET/MR的放射组学模型经过进一步改进和验证后,可能成为预测NPC局部侵袭和远处转移的更有用、更经济的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2269/7506153/c053d1124076/fonc-10-01619-g0001.jpg

相似文献

1
Radiomics Analysis and Correlation With Metabolic Parameters in Nasopharyngeal Carcinoma Based on PET/MR Imaging.
Front Oncol. 2020 Sep 8;10:1619. doi: 10.3389/fonc.2020.01619. eCollection 2020.
3
A diagnosis model in nasopharyngeal carcinoma based on PET/MRI radiomics and semiquantitative parameters.
BMC Med Imaging. 2022 Aug 29;22(1):150. doi: 10.1186/s12880-022-00883-6.
10
Advanced nasopharyngeal carcinoma: pre-treatment prediction of progression based on multi-parametric MRI radiomics.
Oncotarget. 2017 Aug 2;8(42):72457-72465. doi: 10.18632/oncotarget.19799. eCollection 2017 Sep 22.

引用本文的文献

2
Deciphering the Prognostic Efficacy of MRI Radiomics in Nasopharyngeal Carcinoma: A Comprehensive Meta-Analysis.
Diagnostics (Basel). 2024 Apr 29;14(9):924. doi: 10.3390/diagnostics14090924.
6
Radiomics analysis in medical imaging research.
J Med Radiat Sci. 2023 Mar;70(1):3-7. doi: 10.1002/jmrs.662. Epub 2023 Feb 10.
8
Prognostic value of PET/CT and MR-based baseline radiomics among patients with non-metastatic nasopharyngeal carcinoma.
Front Oncol. 2022 Oct 24;12:952763. doi: 10.3389/fonc.2022.952763. eCollection 2022.
9
A diagnosis model in nasopharyngeal carcinoma based on PET/MRI radiomics and semiquantitative parameters.
BMC Med Imaging. 2022 Aug 29;22(1):150. doi: 10.1186/s12880-022-00883-6.

本文引用的文献

1
Hippocampus Radiomic Biomarkers for the Diagnosis of Amnestic Mild Cognitive Impairment: A Machine Learning Method.
Front Aging Neurosci. 2019 Nov 21;11:323. doi: 10.3389/fnagi.2019.00323. eCollection 2019.
2
Preliminary clinical results for PET/MR compared with PET/CT in patients with nasopharyngeal carcinoma.
Oncol Rep. 2020 Jan;43(1):177-187. doi: 10.3892/or.2019.7392. Epub 2019 Oct 30.
3
Heterogeneity in tumours: Validating the use of radiomic features on F-FDG PET/CT scans of lung cancer patients as a prognostic tool.
Radiother Oncol. 2020 Mar;144:72-78. doi: 10.1016/j.radonc.2019.10.012. Epub 2019 Nov 14.
5
Machine Learning-Based Analysis of MR Multiparametric Radiomics for the Subtype Classification of Breast Cancer.
Front Oncol. 2019 Jun 14;9:505. doi: 10.3389/fonc.2019.00505. eCollection 2019.
6
Radiomics in Glioblastoma: Current Status and Challenges Facing Clinical Implementation.
Front Oncol. 2019 May 21;9:374. doi: 10.3389/fonc.2019.00374. eCollection 2019.
9
Predicting Gleason Score of Prostate Cancer Patients Using Radiomic Analysis.
Front Oncol. 2018 Dec 18;8:630. doi: 10.3389/fonc.2018.00630. eCollection 2018.
10
Predicting the Development of Normal-Appearing White Matter With Radiomics in the Aging Brain: A Longitudinal Clinical Study.
Front Aging Neurosci. 2018 Nov 28;10:393. doi: 10.3389/fnagi.2018.00393. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验