School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, Guangdong, China.
Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
Mol Imaging Biol. 2020 Jun;22(3):730-738. doi: 10.1007/s11307-019-01411-9.
To identify optimal machine learning methods for radiomics-based differentiation of local recurrence versus inflammation from post-treatment nasopharyngeal positron emission tomography/X-ray computed tomography (PET/CT) images.
Seventy-six nasopharyngeal carcinoma (NPC) patients were enrolled (41/35 local recurrence/inflammation as confirmed by pathology). Four hundred eighty-seven radiomics features were extracted from PET images for each patient. The diagnostic performance was investigated for 42 cross-combinations derived from 6 feature selection methods and 7 classifiers. Of the original cohort, 70 % was applied for feature selection and classifier development, and the remaining 30 % used as an independent validation set. The diagnostic performance was evaluated using area under the ROC curve (AUC), test error, sensitivity, and specificity. Furthermore, the performance of the radiomics signatures against routine features was statistically compared using DeLong's method.
The cross-combination fisher score (FSCR) + k-nearest neighborhood (KNN), FSCR + support vector machines with radial basis function kernel (RBF-SVM), FSCR + random forest (RF), and minimum redundancy maximum relevance (MRMR) + RBF-SVM outperformed others in terms of accuracy (AUC 0.883, 0.867, 0.892, 0.883; sensitivity 0.833, 0.864, 0.831, 0.750; specificity 1, 1, 0.873, 1) and reliability (test error 0.091, 0.136, 0.150, 0.136). Compared with conventional metrics, the radiomics signatures showed higher AUC values (0.867-0.892 vs. 0.817), though the differences were not statistically significant (p = 0.462-0.560).
This study identified the most accurate and reliable machine learning methods, which could enhance the application of radiomics methods in the precision of diagnosis of NPC.
确定基于机器学习的放射组学方法,以区分治疗后鼻咽部正电子发射断层扫描/计算机断层扫描(PET/CT)图像中的局部复发与炎症。
共纳入 76 例鼻咽癌(NPC)患者(经病理证实 41/35 例为局部复发/炎症)。为每位患者从 PET 图像中提取 487 个放射组学特征。研究了 6 种特征选择方法和 7 种分类器的 42 种交叉组合的诊断性能。原始队列的 70%用于特征选择和分类器开发,其余 30%用于独立验证集。使用 ROC 曲线下面积(AUC)、测试误差、敏感性和特异性评估诊断性能。此外,还使用 DeLong 方法对放射组学特征与常规特征的性能进行了统计学比较。
FSCR+k 最近邻(KNN)、FSCR+径向基函数核支持向量机(RBF-SVM)、FSCR+随机森林(RF)和最小冗余最大相关性(MRMR)+RBF-SVM 在准确性(AUC 0.883、0.867、0.892、0.883;敏感性 0.833、0.864、0.831、0.750;特异性 1、1、0.873、1)和可靠性(测试误差 0.091、0.136、0.150、0.136)方面表现优于其他组合。与常规指标相比,放射组学特征的 AUC 值更高(0.867-0.892 比 0.817),尽管差异无统计学意义(p=0.462-0.560)。
本研究确定了最准确和可靠的机器学习方法,这可以提高放射组学方法在 NPC 精准诊断中的应用。