Cariello Michele, Johnston Beth, Bhosale Manik, Amores Marco, Wilson Emma, McCarron Liam J, Wilson Claire, Corr Serena A, Cooke Graeme
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom.
ACS Appl Energy Mater. 2020 Sep 28;3(9):8302-8308. doi: 10.1021/acsaem.0c00829. Epub 2020 Aug 18.
Organic-based electrodes for Li- and Na-ion batteries present attractive alternatives to commonly applied inorganic counterparts which can often carry with them supply-chain risks, safety concerns with thermal runaway, and adverse environmental impact. The ability to chemically direct the structure of organic electrodes through control over functional groups is of particular importance, as this provides a route to fine-tune electrochemical performance parameters. Here, we report two benzo-dipteridine derivatives, and , as high-capacity electrodes for use in Li- and Na-ion batteries. These moieties permit binding of multiple Li-ions per molecule while simultaneously ensuring low solubility in the supporting electrolyte, often a precluding issue with organic electrodes. Both display excellent electrochemical stability, with discharge capacities of 142 and 182 mAh g after 100 cycles at a C/10 rate and Coulombic efficiencies of 96% and ∼ 100% demonstrated for and , respectively. The application of a Na-ion cell has also been demonstrated, showing discharge capacities of 88.8 and 137 mAh g after 100 cycles at a C/2 rate for and , respectively. This work provides an encouraging precedent for these and related structures to provide versatile, high-energy density, and long cycle-life electrochemical energy storage materials.
用于锂离子和钠离子电池的有机基电极是常用无机电极颇具吸引力的替代品,无机电极往往伴随着供应链风险、热失控带来的安全问题以及不利的环境影响。通过控制官能团来化学指导有机电极结构的能力尤为重要,因为这提供了一条微调电化学性能参数的途径。在此,我们报道了两种苯并二蝶啶衍生物,即[具体衍生物名称1]和[具体衍生物名称2],作为用于锂离子和钠离子电池的高容量电极。这些部分允许每个分子结合多个锂离子,同时确保在支持电解质中的低溶解度,而这通常是有机电极的一个排除问题。两者都表现出优异的电化学稳定性,在C/10速率下循环100次后,[具体衍生物名称1]和[具体衍生物名称2]的放电容量分别为142和182 mAh g,库仑效率分别为96%和约100%。钠离子电池的应用也得到了证明,在C/2速率下循环100次后,[具体衍生物名称1]和[具体衍生物名称2]的放电容量分别为88.8和137 mAh g。这项工作为这些及相关结构提供通用、高能量密度和长循环寿命的电化学储能材料提供了一个令人鼓舞的先例。