Suppr超能文献

设计低配位铂单原子以实现优异的氧还原电催化性能。

Engineering the Low Coordinated Pt Single Atom to Achieve the Superior Electrocatalytic Performance toward Oxygen Reduction.

作者信息

Song Zhongxin, Zhu Ya-Nan, Liu Hanshuo, Banis Mohammad Norouzi, Zhang Lei, Li Junjie, Doyle-Davis Kieran, Li Ruying, Sham Tsun-Kong, Yang Lijun, Young Alan, Botton Gianluigi A, Liu Li-Min, Sun Xueliang

机构信息

Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.

Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada.

出版信息

Small. 2020 Oct;16(43):e2003096. doi: 10.1002/smll.202003096. Epub 2020 Oct 4.

Abstract

Configuring metal single-atom catalysts (SACs) with high electrocatalytic activity and stability is one efficient strategy in achieving the cost-competitive catalyst for fuel cells' applications. Herein, the atomic layer deposition (ALD) strategy for synthesis of Pt SACs on the metal-organic framework (MOF)-derived N-doped carbon (NC) is proposed. Through adjusting the ALD exposure time of the Pt precursor, the size-controlled Pt catalysts, from Pt single atoms to subclusters and nanoparticles, are prepared on MOF-NC support. X-ray absorption fine structure spectra determine the increased electron vacancy in Pt SACs and indicate the Pt-N coordination in the as-prepared Pt SACs. Benefiting from the low-coordination environment and anchoring interaction between Pt atoms and nitrogen-doping sites from MOF-NC support, the Pt SACs deliver an enhanced activity and stability with 6.5 times higher mass activity than that of Pt nanoparticle catalysts in boosting the oxygen reduction reaction (ORR). Density functional theory calculations indicate that Pt single atoms prefer to be anchored by the pyridinic N-doped carbon sites. Importantly, it is revealed that the electronic structure of Pt SAs can be adjusted by adsorption of hydroxyl and oxygen, which greatly lowers free energy change for the rate-determining step and enhances the activity of Pt SACs toward the ORR.

摘要

配置具有高电催化活性和稳定性的金属单原子催化剂(SACs)是实现用于燃料电池应用的具有成本竞争力的催化剂的一种有效策略。在此,提出了一种在金属有机框架(MOF)衍生的氮掺杂碳(NC)上合成Pt SACs的原子层沉积(ALD)策略。通过调整Pt前驱体的ALD暴露时间,在MOF-NC载体上制备了尺寸可控的Pt催化剂,从Pt单原子到亚簇和纳米颗粒。X射线吸收精细结构光谱确定了Pt SACs中增加的电子空位,并表明了所制备的Pt SACs中的Pt-N配位。受益于低配位环境以及Pt原子与MOF-NC载体的氮掺杂位点之间的锚定相互作用,Pt SACs在促进氧还原反应(ORR)方面具有增强的活性和稳定性,其质量活性比Pt纳米颗粒催化剂高6.5倍。密度泛函理论计算表明,Pt单原子更喜欢被吡啶型氮掺杂碳位点锚定。重要的是,研究表明Pt单原子(Pt SAs)的电子结构可以通过羟基和氧的吸附来调节,这大大降低了速率决定步骤的自由能变化,并提高了Pt SACs对ORR的活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验