Rose Jonas C, Gehlen David B, Omidinia-Anarkoli Abdolrahman, Fölster Maaike, Haraszti Tamás, Jaekel Esther E, De Laporte Laura
DWI Leibniz-Institute for Interactive Materials, RWTH Aachen University, Aachen, D-52056, Germany.
ITMC-Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, D-52074, Germany.
Adv Healthc Mater. 2020 Nov;9(21):e2000886. doi: 10.1002/adhm.202000886. Epub 2020 Oct 5.
Directing cells is essential to organize multi-cellular organisms that are built up from subunits executing specific tasks. This guidance requires a precisely controlled symphony of biochemical, mechanical, and structural signals. While many guiding mechanisms focus on 2D structural patterns or 3D biochemical gradients, injectable material platforms that elucidate how cellular processes are triggered by defined 3D physical guiding cues are still lacking but crucial for the repair of soft tissues. Herein, a recently developed anisotropic injectable hybrid hydrogel (Anisogel) contains rod-shaped microgels that orient in situ by a magnetic field and has propelled studying 3D cell guidance. Here, the Anisogel is used to investigate the dependence of axonal guidance on microgel dimensions, aspect ratio, and distance. While large microgels result in high material anisotropy, they significantly reduce neurite outgrowth and thus the guidance efficiency. Narrow and long microgels enable strong axonal guidance with maximal outgrowth including cell sensing over distances of tens of micrometers in 3D. Moreover, nerve cells decide to orient inside the Anisogel within the first three days, followed by strengthening of the alignment, which goes along with oriented fibronectin deposition. These findings demonstrate the potential of the Anisogel to tune structural and mechanical parameters for specific applications.
引导细胞对于构建由执行特定任务的亚单位组成的多细胞生物至关重要。这种引导需要精确控制的生化、机械和结构信号的协同作用。虽然许多引导机制侧重于二维结构模式或三维生化梯度,但阐明细胞过程如何由定义的三维物理引导线索触发的可注射材料平台仍然缺乏,然而对于软组织修复却至关重要。在此,一种最近开发的各向异性可注射混合水凝胶(各向异性凝胶)包含通过磁场原位定向的棒状微凝胶,并推动了对三维细胞引导的研究。在此,各向异性凝胶用于研究轴突引导对微凝胶尺寸、纵横比和距离的依赖性。虽然大型微凝胶会导致高材料各向异性,但它们会显著减少神经突生长,从而降低引导效率。窄而长的微凝胶能够实现强大的轴突引导,包括在三维空间中数十微米距离上的细胞传感以及最大程度的生长。此外,神经细胞在前三天内决定在各向异性凝胶内定向,随后排列得到加强,这与定向纤连蛋白沉积同时发生。这些发现证明了各向异性凝胶针对特定应用调整结构和机械参数的潜力。