DWI - Leibniz-Institute for Interactive Materials , 52074 Aachen, Germany.
Institute for Technical and Macromolecular Chemistry, RWTH , 52062 Aachen, Germany.
Nano Lett. 2017 Jun 14;17(6):3782-3791. doi: 10.1021/acs.nanolett.7b01123. Epub 2017 Mar 24.
Injectable biomaterials provide the advantage of a minimally invasive application but mostly lack the required structural complexity to regenerate aligned tissues. Here, we report a new class of tissue regenerative materials that can be injected and form an anisotropic matrix with controlled dimensions using rod-shaped, magnetoceptive microgel objects. Microgels are doped with small quantities of superparamagnetic iron oxide nanoparticles (0.0046 vol %), allowing alignment by external magnetic fields in the millitesla order. The microgels are dispersed in a biocompatible gel precursor and after injection and orientation are fixed inside the matrix hydrogel. Regardless of the low volume concentration of the microgels below 3%, at which the geometrical constrain for orientation is still minimum, the generated macroscopic unidirectional orientation is strongly sensed by the cells resulting in parallel nerve extension. This finding opens a new, minimal invasive route for therapy after spinal cord injury.
可注射生物材料具有微创应用的优势,但大多缺乏再生排列组织所需的结构复杂性。在这里,我们报告了一类新的组织再生材料,它可以注射,并使用棒状、磁敏感微凝胶物体形成具有可控尺寸的各向异性基质。微凝胶中掺杂有少量超顺磁氧化铁纳米颗粒(0.0046 体积%),可以在外磁场中排列,磁场强度在毫特斯拉范围内。微凝胶分散在生物相容性的凝胶前体中,注射和定向后固定在基质水凝胶内。无论微凝胶的体积浓度低于 3%,其几何定向约束仍然最小,产生的宏观单向定向仍被细胞强烈感知,导致神经平行延伸。这一发现为脊髓损伤后的治疗开辟了一条新的微创途径。