Suppr超能文献

便携式 X 射线荧光光谱法通过随机森林回归预测粪便中的元素组成和水分

Elemental composition and moisture prediction in manure by portable X-ray fluorescence spectroscopy using random forest regression.

机构信息

Division of Plant and Soil Sciences, West Virginia Univ., Morgantown, WV, 26506, USA.

Wetland and Aquatic Biogeochemistry Laboratory, College of Coast and Environment, Louisiana State Univ., Baton Rouge, LA, 70803, USA.

出版信息

J Environ Qual. 2020 Mar;49(2):472-482. doi: 10.1002/jeq2.20013. Epub 2020 Feb 22.

Abstract

Manure elemental composition determination is essential to develop farm nutrient budgets and assess environmental risk. Portable X-ray fluorescence (PXRF) spectrometers could facilitate hazardous waste-free, rapid, and cost-effective elemental concentration determinations. However, sample moisture is a problem for elemental concentration determination by X-ray methods. The objective of this study was to quantify the effect of sample moisture content, predict moisture content, and correct for moisture effect on elemental concentration determinations in livestock manure. Oven-dried manure samples (n = 40) were ground and adjusted to five moisture ranges of (w/w moisture) <10%, 10-20%, 20-30%, 40-50%, and 60-70%. Samples were scanned by PXRF for 180 s using a vacuum (<1,333 Pa) and without a filter. The presence of moisture negatively affected elemental determination in manure samples. Calibrations (n = 200) were prepared using random forest regression with detector channel counts as independent variables. A three-step validation was performed using all the data, random cross-validation and external validation. The back end of the spectrum (14-15 keV) had strong predictive power (r  = .98) for moisture content. The random forest approach increased r between PXRF and wet chemical methods from <.66 to >.90 for P, K, and Mg and from .78 to .98 for Fe, compared with linear, nonlinear, and Lucas-Tooth and Price equations. These results indicated that elemental concentration can accurately be measured in dried and moist manure samples using PXRF and expands the potential applications of PXRF to in situ elemental determinations for agricultural and environmental samples.

摘要

粪便元素组成的测定对于制定农场养分预算和评估环境风险至关重要。便携式 X 射线荧光(PXRF)光谱仪可以实现无危险废物、快速且经济高效的元素浓度测定。然而,样品水分是 X 射线方法测定元素浓度的一个问题。本研究的目的是量化样品水分含量的影响,预测水分含量,并校正水分对牲畜粪便中元素浓度测定的影响。将经过烘箱干燥的粪便样品(n = 40)研磨,并调整至五个水分范围(w/w 水分)<10%、10-20%、20-30%、40-50%和 60-70%。使用真空(<1,333 Pa)和无过滤器,通过 PXRF 对样品进行 180 秒扫描。水分的存在对粪便样品中元素的测定产生负面影响。使用随机森林回归,以探测器通道计数作为自变量,制备校准(n = 200)。使用所有数据、随机交叉验证和外部验证进行了三步验证。光谱的后端(14-15 keV)对水分含量具有很强的预测能力(r =.98)。与线性、非线性和 Lucas-Tooth 和 Price 方程相比,随机森林方法将 PXRF 与湿法化学方法之间的 r 提高到 >.90 ,用于 P、K 和 Mg,提高到.78 到.98 ,用于 Fe,这表明可以使用 PXRF 准确测量干燥和湿润的粪便样品中的元素浓度,并扩大了 PXRF 在农业和环境样品原位元素测定中的潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验