Omar M, Farid K, Emran T, El-Taweel F, Tabll A, Omran M
Chemistry Department, Faculty of Science, Damietta University , Damietta, Egypt.
Tropical Medicine Department, Faculty of Medicine, Mansoura University , Mansoura, Egypt.
Br J Biomed Sci. 2021 Apr;78(2):72-77. doi: 10.1080/09674845.2020.1832371. Epub 2020 Nov 18.
Early detection of hepatocellular carcinoma (HCC) is crucial in providing more effective therapies. As routine laboratory variables are readily accessible, this study aimed to develop a simple non-invasive model for predicting hepatocellular cancer.
Two groups of patients were recruited: an estimation group (n = 300) and a validation group (n = 625). Each comprised two categories: hepatocellular cancer and liver cirrhosis. Logistic regression analyses and receiver operating characteristic (ROC) curves were used to develop and validate the HCC-Mark model comprising AFP, high-sensitivity C-reactive protein, albumin and platelet count. This model was tested in cancer patients classified by the Barcelona Clinic Liver Cancer (BCLC), Cancer of Liver Italian Program (CLIP) and Okuda systems, and was compared with other non-invasive models for predicting hepatocellular cancer.
HCC-Mark produced a ROC AUC of 0.89 (95% CI 0.85-0.90) for discriminating hepatocellular carcinoma from liver cirrhosis in the estimation group and 0.90 (0.86-0.90) in the validation group (both p < 0.0001). This AUC exceeded all other models, that had AUCs from 0.41 to 0.81. AUCs of HCC-Mark for discriminating patients with a single focal lesion, absent macrovascular invasion, tumour size <2 cm, BCLC (0-A), CLIP (0-1) and Okuda (stage Ι) from cirrhotic patients were 0.88 (0.85-0.90), 0.87 (0.85-0.89), 0.89 (0.85-0.93), 0.87 (0.84-0.89), 0.85 (0.82-0.87) and 0.86 (0.83-0.89), respectively (all p < 0.0001).
HCC-Mark is an accurate and validated model for the detection of hepatocellular cancer and certain of its clinical features.
肝细胞癌(HCC)的早期检测对于提供更有效的治疗至关重要。由于常规实验室变量易于获取,本研究旨在开发一种简单的非侵入性模型来预测肝细胞癌。
招募了两组患者:一个估计组(n = 300)和一个验证组(n = 625)。每组包括两类:肝细胞癌和肝硬化。使用逻辑回归分析和受试者工作特征(ROC)曲线来开发和验证包含甲胎蛋白、高敏C反应蛋白、白蛋白和血小板计数的HCC-Mark模型。该模型在根据巴塞罗那临床肝癌(BCLC)、意大利肝癌项目(CLIP)和奥田系统分类的癌症患者中进行了测试,并与其他预测肝细胞癌的非侵入性模型进行了比较。
在估计组中,HCC-Mark区分肝细胞癌和肝硬化的ROC曲线下面积(AUC)为0.89(95%置信区间0.85 - 0.90),在验证组中为0.90(0.86 - 0.90)(均p < 0.0001)。该AUC超过了所有其他模型,其他模型的AUC在0.41至0.81之间。HCC-Mark区分单一局灶性病变、无大血管侵犯、肿瘤大小<2 cm、BCLC(0 - A)、CLIP(0 - 1)和奥田(Ⅰ期)患者与肝硬化患者的AUC分别为0.88(0.85 - 0.90)、0.87(0.85 - 0.89)、0.89(0.85 - 0.93)、0.87(0.84 - 0.89)、0.85(0.82 - 0.87)和0.86(0.83 - 0.89)(均p < 0.0001)。
HCC-Mark是一种用于检测肝细胞癌及其某些临床特征的准确且经过验证的模型。