Sharan Roneel V, Berkovsky Shlomo
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:545-548. doi: 10.1109/EMBC44109.2020.9176243.
The use of feature extraction and selection from EEG signals has shown to be useful in the detection of epileptic seizure segments. However, these traditional methods have more recently been surpassed by deep learning techniques, forgoing the need for complex feature engineering. This work aims to extend the conventional approach of epileptic seizure detection utilizing raw power spectra of EEG signals and convolutional neural networks (CNN). The proposed technique utilizes wavelet transform to compute the frequency characteristics of multi-channel EEG signals. The EEG signals are divided into 2 second epochs and frequency spectrum up to a cutoff frequency of 45 Hz is computed. This multi-channel raw spectral data forms the input to a one-dimensional CNN (1-D CNN). Spectral data from the current, previous, and next epochs is utilized for predicting the label of the current epoch. The performance of the technique is evaluated using a dataset of EEG signals from 24 cases. The proposed method achieves an accuracy of 97.25% in detecting epileptic seizure segments. This result shows that multi-channel EEG wavelet power spectra and 1-D CNN are useful in detecting epileptic seizures.
从脑电图(EEG)信号中进行特征提取和选择已被证明在癫痫发作段检测中很有用。然而,这些传统方法最近已被深度学习技术超越,无需复杂的特征工程。这项工作旨在扩展利用EEG信号的原始功率谱和卷积神经网络(CNN)进行癫痫发作检测的传统方法。所提出的技术利用小波变换来计算多通道EEG信号的频率特征。EEG信号被划分为2秒的时间段,并计算截止频率为45Hz的频谱。这种多通道原始频谱数据构成一维CNN(1-D CNN)的输入。来自当前、前一个和下一个时间段的频谱数据用于预测当前时间段的标签。使用来自24例病例的EEG信号数据集评估该技术的性能。所提出的方法在检测癫痫发作段时达到了97.25%的准确率。这一结果表明,多通道EEG小波功率谱和1-D CNN在检测癫痫发作方面很有用。