School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.
Sensors (Basel). 2022 Aug 27;22(17):6458. doi: 10.3390/s22176458.
Epilepsy is a common neurological disease worldwide, characterized by recurrent seizures. There is currently no cure for epilepsy. However, seizures can be controlled by drugs and surgeries in about 70% of epileptic patients. A timely and accurate prediction of seizures can prevent injuries during seizures and improve the patients' quality of life. In this paper, we proposed an intelligent epileptic prediction system based on Synchrosqueezed Wavelet Transform (SWT) and Multi-Level Feature Convolutional Neural Network (MLF-CNN) for smart healthcare IoT network. In this system, we used SWT to map EEG signals to the frequency domain, which was able to measure the energy changes in EEG signals caused by seizures within a well-defined Time-Frequency (TF) plane. MLF-CNN was then applied to extract multi-level features from the processed EEG signals and classify the different seizure segments. The performance of our proposed system was evaluated with the publicly available CHB-MIT dataset and our private ZJU4H dataset. The system achieved an accuracy of 96.99% and 94.25%, a sensitivity of 96.48% and 97.76%, a specificity of 97.46% and 94.07% and a false prediction rate (FPR/h) of 0.031 and 0.049 FPR/h on the CHB-MIT dataset and the ZJU4H dataset, respectively.
癫痫是一种常见的全球神经系统疾病,其特征是反复发作。目前尚无治愈癫痫的方法。然而,通过药物和手术可以控制大约 70%的癫痫患者的癫痫发作。及时准确地预测癫痫发作可以防止癫痫发作期间受伤,并提高患者的生活质量。在本文中,我们提出了一种基于同步挤压小波变换 (SWT) 和多级特征卷积神经网络 (MLF-CNN) 的智能癫痫预测系统,用于智能医疗保健物联网网络。在该系统中,我们使用 SWT 将 EEG 信号映射到频域,能够测量癫痫发作引起的 EEG 信号在定义良好的时频 (TF) 平面内的能量变化。然后,MLF-CNN 被应用于从处理后的 EEG 信号中提取多级特征,并对不同的癫痫发作段进行分类。我们的系统使用公开的 CHB-MIT 数据集和我们的私人 ZJU4H 数据集进行了性能评估。该系统在 CHB-MIT 数据集和 ZJU4H 数据集上的准确率分别为 96.99%和 94.25%、灵敏度分别为 96.48%和 97.76%、特异性分别为 97.46%和 94.07%、假阳性率 (FPR/h) 分别为 0.031 和 0.049 FPR/h。