Talebi Alireza, Catrambone Vincenzo, Barbieri Riccardo, Valenza Gaetano
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:557-560. doi: 10.1109/EMBC44109.2020.9175750.
We propose a novel computational framework for the estimation of functional directional brain-to-heart interplay in an instantaneous fashion. The framework is based on inhomogeneous point-process models for human heartbeat dynamics and employs inverse-Gaussian probability density functions characterizing the timing of R-peak events. The instantaneous estimation of the functional directional coupling is based on the definition of point-process transfer entropy, which is here retrieved from heart rate variability (HRV) and Electroencephalography (EEG) power spectral series gathered from 12 healthy subjects undergoing significant sympathovagal changes induced by a cold-pressor test. Results suggest that EEG oscillations dynamically influence heartbeat dynamics with specific time delays in the 30-60s and 90-120s ranges, and through a functional activity over specific cortical regions.
我们提出了一种新颖的计算框架,用于即时估计功能性脑-心交互作用。该框架基于人类心跳动力学的非齐次点过程模型,并采用逆高斯概率密度函数来表征R波峰事件的时间。功能性方向耦合的即时估计基于点过程转移熵的定义,这里从12名健康受试者的心率变异性(HRV)和脑电图(EEG)功率谱序列中获取,这些受试者在冷加压试验引起显著交感迷走神经变化的过程中进行了数据收集。结果表明,脑电图振荡在30 - 60秒和90 - 120秒范围内以特定的时间延迟动态影响心跳动力学,并通过特定皮质区域的功能活动产生影响。