Suppr超能文献

使用夜间脉搏血氧饱和度测定法和卷积神经网络自动评估小儿睡眠呼吸暂停严重程度

Automatic Assessment of Pediatric Sleep Apnea Severity Using Overnight Oximetry and Convolutional Neural Networks.

作者信息

Vaquerizo-Villar Fernando, Alvarez Daniel, Kheirandish-Gozal Leila, Gutierrez-Tobal Gonzalo C, Gomez-Pilar Javier, Crespo Andrea, Del Campo Felix, Gozal David, Hornero Roberto

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:633-636. doi: 10.1109/EMBC44109.2020.9176342.

Abstract

In this study, we use the overnight blood oxygen saturation (SpO) signal along with convolutional neural networks (CNN) for the automatic estimation of pediatric sleep apnea-hypopnea syndrome (SAHS) severity. The few preceding studies have focused on the application of conventional feature extraction methods to obtain information from the SpO signal, which may omit relevant data related to the illness. In contrast, deep learning techniques are able to automatically learn features from raw input signal. Thus, we propose to assess whether CNN, a deep learning algorithm, could automatically estimate the apnea-hypopnea index (AHÍ) from nocturnal oximetry to help establish pediatric SAHS presence and severity. A database of 746 SpO recordings is involved in the study. CNN was trained using 20-min segments from the SpO signal in the training set (400 subjects). Hyperparameters of the CNN architecture were tuned using a validation set (100 subjects). This model was applied to a test set (246 subjects), in which the final AHI of each patient was obtained as the average of the output of the CNN for all the segments of the corresponding SpO signal. The AHI estimated by the CNN showed a promising diagnostic performance, with 74.8%, 90.7%, and 95.1% accuracies for the common AHI severity thresholds of 1, 5, and 10 events per hour (e/h), respectively. Furthermore, this model reached 28.6, 32.9, and 120.0 positive likelihood ratios for the above-mentioned AHI thresholds. This suggests that the information extracted from the oximetry signal by deep learning techniques may be useful to both establish pediatric SAHS and its severity.

摘要

在本研究中,我们使用夜间血氧饱和度(SpO)信号以及卷积神经网络(CNN)来自动评估小儿睡眠呼吸暂停低通气综合征(SAHS)的严重程度。之前的少数研究主要集中在应用传统特征提取方法从SpO信号中获取信息,这可能会遗漏与疾病相关的重要数据。相比之下,深度学习技术能够从原始输入信号中自动学习特征。因此,我们提议评估深度学习算法CNN是否能够根据夜间血氧饱和度测定自动估计呼吸暂停低通气指数(AHÍ),以帮助确定小儿SAHS的存在及其严重程度。该研究纳入了一个包含746份SpO记录的数据库。使用训练集(400名受试者)中SpO信号的20分钟片段对CNN进行训练。使用验证集(100名受试者)对CNN架构的超参数进行调整。将该模型应用于测试集(246名受试者),其中每个患者的最终AHI作为CNN对相应SpO信号所有片段输出的平均值获得。CNN估计的AHI显示出良好的诊断性能,对于每小时1、5和10次事件(e/h)的常见AHI严重程度阈值,准确率分别为74.8%、90.7%和95.1%。此外,对于上述AHI阈值,该模型的阳性似然比分别达到28.6、32.9和120.0。这表明通过深度学习技术从血氧饱和度信号中提取的信息可能有助于确定小儿SAHS及其严重程度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验