Suppr超能文献

用于生理数据分析的时间顺序和因果向量。

Temporal orders and causal vector for physiological data analysis.

作者信息

Mlynczak Marcel

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:750-753. doi: 10.1109/EMBC44109.2020.9176842.

Abstract

In addition to the global parameter- and time-series-based approaches, physiological analyses should constitute a local temporal one, particularly when analyzing data within protocol segments. Hence, we introduce the R package implementing the estimation of temporal orders with a causal vector (CV). It may use linear modeling or time series distance. The algorithm was tested on cardiorespiratory data comprising tidal volume and tachogram curves, obtained from elite athletes (supine and standing, in static conditions) and a control group (different rates and depths of breathing, while supine). We checked the relation between CV and body position or breathing style. The rate of breathing had a greater impact on the CV than does the depth. The tachogram curve preceded the tidal volume relatively more when breathing was slower.

摘要

除了基于全局参数和时间序列的方法外,生理分析还应构成一种局部时间分析方法,尤其是在分析协议段内的数据时。因此,我们引入了一个R包,该包实现了使用因果向量(CV)估计时间顺序。它可以使用线性建模或时间序列距离。该算法在从精英运动员(仰卧和站立,静态条件下)和对照组(仰卧时不同的呼吸速率和深度)获得的包含潮气量和心动图曲线的心肺数据上进行了测试。我们检查了CV与身体姿势或呼吸方式之间的关系。呼吸速率对CV的影响比深度更大。当呼吸较慢时,心动图曲线相对更先于潮气量出现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验