Suppr超能文献

用于光学相干断层扫描(OCT)图像脉络膜层分割的带跳跃连接注意力机制的深度学习

Deep Learning with Skip Connection Attention for Choroid Layer Segmentation in OCT Images.

作者信息

Mao Xiaoqian, Zhao Yitian, Chen Bang, Ma Yuhui, Gu Zaiwang, Gu Shenshen, Yang Jianlong, Cheng Jun, Liu Jiang

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1641-1645. doi: 10.1109/EMBC44109.2020.9175631.

Abstract

Since the thickness and shape of the choroid layer are indicators for the diagnosis of several ophthalmic diseases, the choroid layer segmentation is an important task. There exist many challenges in segmentation of the choroid layer. In this paper, in view of the lack of context information due to the ambiguous boundaries, and the subsequent inconsistent predictions of the same category targets ascribed to the lack of context information or the large regions, a novel Skip Connection Attention (SCA) module which is integrated into the U-Shape architecture is proposed to improve the precision of choroid layer segmentation in Optical Coherence Tomography (OCT) images. The main function of the SCA module is to capture the global context in the highest level to provide the decoder with stage-by-stage guidance, to extract more context information and generate more consistent predictions for the same class targets. By integrating the SCA module into the U-Net and CE-Net, we show that the module improves the accuracy of the choroid layer segmentation.

摘要

由于脉络膜层的厚度和形状是多种眼科疾病诊断的指标,因此脉络膜层分割是一项重要任务。脉络膜层分割存在许多挑战。本文针对由于边界模糊导致上下文信息缺失,以及随后因上下文信息缺失或区域较大而对同一类别目标预测不一致的问题,提出了一种集成到U型架构中的新型跳跃连接注意力(SCA)模块,以提高光学相干断层扫描(OCT)图像中脉络膜层分割的精度。SCA模块的主要功能是在最高级别捕获全局上下文,为解码器提供逐阶段指导,提取更多上下文信息,并为同一类目标生成更一致的预测。通过将SCA模块集成到U-Net和CE-Net中,我们表明该模块提高了脉络膜层分割的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验