Damseh Rafat, Delafontaine-Martel Patrick, James-Marchand Paul, Sirpal Parikshat, Cheriet Farida, Lesage Frederic
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1907-1910. doi: 10.1109/EMBC44109.2020.9176322.
Two-photon microscopy (TPM) can provide a detailed microscopic information of cerebrovascular structures. Extracting anatomical vascular models from TPM angiograms remains a tedious task due to image degeneration associated with TPM acquisitions and the complexity of microvascular networks. Here, we propose a fully automated pipeline capable of providing useful anatomical models of vascular structures captured with TPM. In the proposed method, we segment blood vessels using a fully convolutional neural network and employ the resulting binary labels to create an initial geometric graph enclosed within vessels boundaries. The initial geometry is then decimated and refined to form graphed curve skeletons that can retain both the vascular shape and its topology. We validate the proposed method on 3D realistic TPM angiographies and compare our results with that obtained through manual annotations.
双光子显微镜(TPM)能够提供脑血管结构的详细微观信息。由于与TPM采集相关的图像退化以及微血管网络的复杂性,从TPM血管造影图像中提取解剖血管模型仍然是一项繁琐的任务。在此,我们提出了一种全自动流程,能够提供用TPM捕获的血管结构的有用解剖模型。在所提出的方法中,我们使用全卷积神经网络对血管进行分割,并利用得到的二进制标签创建一个包含在血管边界内的初始几何图形。然后对初始几何图形进行简化和细化,以形成能够保留血管形状及其拓扑结构的图形化曲线骨架。我们在3D真实TPM血管造影图像上验证了所提出的方法,并将我们的结果与通过手动标注获得的结果进行比较。