Suppr超能文献

通过稳健主成分分析去噪射频数据:超声弹性成像结果

Denoising RF Data via Robust Principal Component Analysis: Results in Ultrasound Elastography.

作者信息

Ashikuzzaman Md, Rivaz Hassan

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2067-2070. doi: 10.1109/EMBC44109.2020.9175163.

Abstract

Ultrasound data often suffers from an excessive amount of noise especially from deep tissue or in synthetic aperture imaging where the acoustic wave is weak. Such noisy data renders Time Delay Estimation (TDE) inaccurate in the context of ultrasound elastography. Herein, a novel two-step elastography technique is presented to ensure accurate TDE while dealing with noisy ultrasound data. In the first step, instead of one, we acquire several Radio-Frequency (RF) frames from both pre- and post-deformed positions of the tissue. We stack the frames collected from pre- and post-deformed planes in separate data matrices. Since each set is collected from the same level of tissue compression, we assume that the Casorati data matrices exhibit underlying low-rank structures, which are sought by taking the low-rank and sparse decomposition framework into account. This Robust Principal Component Analysis (RPCA) approach removes the random noise from the datasets as sparse error components. In the second step, we select one frame from each denoised ensemble and employ GLobal Ultrasound Elastography (GLUE) to perform the strain elastography. We call the proposed technique RPCA-GLUE. Our preliminary validation of RPCA-GLUE against simulation phantoms containing hard and soft inclusions proves its robustness to large noise. Substantial improvement in Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR) has also been observed. Simulation results show that in the presence of large noise, the proposed method substantially improves CNR from 5.0 to 22.6 in a soft inclusion and from 2.2 to 21.7 in a hard inclusion phantom.

摘要

超声数据常常受到大量噪声的影响,尤其是来自深部组织的噪声,或者在合成孔径成像中,由于声波较弱也会产生噪声。在超声弹性成像的背景下,这种有噪声的数据会使时延估计(TDE)不准确。在此,提出了一种新颖的两步弹性成像技术,以在处理有噪声的超声数据时确保准确的TDE。第一步,我们从组织变形前和变形后的位置采集多个射频(RF)帧,而不是一个。我们将从变形前和变形后平面收集的帧堆叠到单独的数据矩阵中。由于每组数据都是从相同的组织压缩水平收集的,我们假设卡索拉蒂数据矩阵呈现出潜在的低秩结构,通过考虑低秩和稀疏分解框架来寻找这种结构。这种鲁棒主成分分析(RPCA)方法将数据集中的随机噪声作为稀疏误差分量去除。第二步,我们从每个去噪后的总体中选择一帧,并采用全局超声弹性成像(GLUE)来执行应变弹性成像。我们将所提出的技术称为RPCA - GLUE。我们针对包含硬夹杂和软夹杂的模拟体模对RPCA - GLUE进行的初步验证证明了其对大噪声的鲁棒性。还观察到信噪比(SNR)和对比度噪声比(CNR)有显著提高。模拟结果表明,在存在大噪声的情况下,所提出的方法在软夹杂体模中将CNR从(5.0)大幅提高到(22.6),在硬夹杂体模中从(2.2)提高到(21.7)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验