Akwaboah Akwasi Darkwah, Yamlome Pascal, Treat Jacqueline A, Cordeiro Jonathan M, Deo Makarand
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2463-2466. doi: 10.1109/EMBC44109.2020.9175707.
Modeling cardiac cell electrophysiology relies on fitting model equations to experimental data obtained under voltage/current clamping conditions. The fitting procedure for these often-nonlinear ionic current equations are mostly executed by trial-and-error by hand or by gradient-based optimization approaches. These methods, though sometimes sufficient at converging at optimal solutions is based on the premise that the characteristic objective function is convex, which often does not apply to cardiac model equations. Meta-heuristic methods, such as evolutionary algorithms and particle swarm algorithms, have proven resilient against early convergence to local optima and saddle-point parameter solutions. This work presents a genetic algorithm-based approach for fitting the adult cardiomyocyte biophysical model formulations to the experimental data obtained in human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM). Specifically, whole-cell patch clamp ionic current data of rapid delayed rectifier potassium current, I, transient outward potassium current, I and hyperpolarization-activated current, I, was used for fitting. Using a two-point crossover scheme along with initial population and mutation constraints randomly selected from a uniformly distributed constrained parameter space, near-optimal fitting was achieved with R values (n = 5) of 0.9960±0.0007, 0.9995±0.0002, and 0.9974±0.0014 for I, I and I respectively.
心脏细胞电生理学建模依赖于将模型方程拟合到在电压/电流钳制条件下获得的实验数据。这些通常是非线性的离子电流方程的拟合过程大多通过手工试错或基于梯度的优化方法来执行。这些方法虽然有时足以收敛到最优解,但其前提是特征目标函数是凸函数,而这通常不适用于心脏模型方程。元启发式方法,如进化算法和粒子群算法,已被证明能有效防止过早收敛到局部最优和鞍点参数解。这项工作提出了一种基于遗传算法的方法,用于将成年心肌细胞生物物理模型公式拟合到在人诱导多能干细胞衍生的心肌细胞(hiPSC-CM)中获得的实验数据。具体而言,使用快速延迟整流钾电流I、瞬时外向钾电流I和超极化激活电流I的全细胞膜片钳离子电流数据进行拟合。采用两点交叉方案以及从均匀分布的约束参数空间中随机选择的初始种群和变异约束,分别对I、I和I实现了接近最优的拟合,R值(n = 5)分别为0.9960±0.0007、0.9995±0.0002和0.9974±0.0014。