Suppr超能文献

人心房动作电位和 Ca2+ 模型:窦性节律和慢性心房颤动。

Human atrial action potential and Ca2+ model: sinus rhythm and chronic atrial fibrillation.

机构信息

Department of Pharmacology, University of California, Davis, 451 Health Sciences Dr, GBSF Room 3513, Davis, CA 95616-8636, USA.

出版信息

Circ Res. 2011 Oct 14;109(9):1055-66. doi: 10.1161/CIRCRESAHA.111.253955. Epub 2011 Sep 15.

Abstract

RATIONALE

Understanding atrial fibrillation (AF) requires integrated understanding of ionic currents and Ca2+ transport in remodeled human atrium, but appropriate models are limited.

OBJECTIVE

To study AF, we developed a new human atrial action potential (AP) model, derived from atrial experimental results and our human ventricular myocyte model.

METHODS AND RESULTS

Atria versus ventricles have lower I(K1), resulting in more depolarized resting membrane potential (≈7 mV). We used higher I(to,fast) density in atrium, removed I(to,slow), and included an atrial-specific I(Kur). I(NCX) and I(NaK) densities were reduced in atrial versus ventricular myocytes according to experimental results. SERCA function was altered to reproduce human atrial myocyte Ca2+ transients. To simulate chronic AF, we reduced I(CaL), I(to), I(Kur) and SERCA, and increased I(K1),I(Ks) and I(NCX). We also investigated the link between Kv1.5 channelopathy, [Ca2+]i, and AF. The sinus rhythm model showed a typical human atrial AP morphology. Consistent with experiments, the model showed shorter APs and reduced AP duration shortening at increasing pacing frequencies in AF or when I(CaL) was partially blocked, suggesting a crucial role of Ca2+ and Na+ in this effect. This also explained blunted Ca2+ transient and rate-adaptation of [Ca2+]i and [Na+]i in chronic AF. Moreover, increasing [Na+]i and altered I(NaK) and I(NCX) causes rate-dependent atrial AP shortening. Blocking I(Kur) to mimic Kv1.5 loss-of-function increased [Ca2+]i and caused early afterdepolarizations under adrenergic stress, as observed experimentally.

CONCLUSIONS

Our study provides a novel tool and insights into ionic bases of atrioventricular AP differences, and shows how Na+ and Ca2+ homeostases critically mediate abnormal repolarization in AF.

摘要

背景

理解心房颤动(AF)需要综合了解重构人心房中的离子电流和 Ca2+转运,但合适的模型有限。

目的

为了研究 AF,我们开发了一种新的人心房动作电位(AP)模型,该模型源自心房实验结果和我们的人心室肌细胞模型。

方法和结果

与心室相比,心房的 I(K1)较低,导致静息膜电位更去极化(≈7 mV)。我们在心房中使用更高的 Ito,fast 密度,去除 Ito,slow,并包括心房特异性 I(Kur)。根据实验结果,I(NCX)和 I(NaK)密度在心房肌细胞中降低。SERCA 功能改变以重现人心房肌细胞 Ca2+瞬变。为了模拟慢性 AF,我们降低了 I(CaL)、I(to)、I(Kur)和 SERCA,增加了 I(K1)、I(Ks)和 I(NCX)。我们还研究了 Kv1.5 通道病、[Ca2+]i 和 AF 之间的联系。窦性节律模型显示出典型的人心房 AP 形态。与实验一致,该模型在 AF 或部分阻断 I(CaL)时显示出较短的 AP 和减少的 AP 持续时间缩短,这表明 Ca2+和 Na+在这种效应中起关键作用。这也解释了慢性 AF 中 Ca2+瞬变和[Ca2+]i 和[Na+]i 的速率适应性变钝。此外,增加[Na+]i 和改变 I(NaK)和 I(NCX)会导致心房 AP 随时间缩短。模拟 Kv1.5 功能丧失的阻断 I(Kur)增加了 [Ca2+]i,并在肾上腺素应激下引起早期后除极,这与实验观察结果一致。

结论

我们的研究为房室 AP 差异的离子基础提供了一种新的工具和见解,并表明 Na+和 Ca2+稳态如何在 AF 中关键调节异常复极。

相似文献

1
Human atrial action potential and Ca2+ model: sinus rhythm and chronic atrial fibrillation.
Circ Res. 2011 Oct 14;109(9):1055-66. doi: 10.1161/CIRCRESAHA.111.253955. Epub 2011 Sep 15.
2
Inter-subject variability in human atrial action potential in sinus rhythm versus chronic atrial fibrillation.
PLoS One. 2014 Aug 26;9(8):e105897. doi: 10.1371/journal.pone.0105897. eCollection 2014.
3
Role of IKur in controlling action potential shape and contractility in the human atrium: influence of chronic atrial fibrillation.
Circulation. 2004 Oct 19;110(16):2299-306. doi: 10.1161/01.CIR.0000145155.60288.71. Epub 2004 Oct 11.
5
In silico screening of the key cellular remodeling targets in chronic atrial fibrillation.
PLoS Comput Biol. 2014 May 22;10(5):e1003620. doi: 10.1371/journal.pcbi.1003620. eCollection 2014 May.
6
Atrial ionic remodeling induced by atrial tachycardia in the presence of congestive heart failure.
Circulation. 2004 Sep 21;110(12):1520-6. doi: 10.1161/01.CIR.0000142052.03565.87.
7
Atrial-selective targeting of arrhythmogenic phase-3 early afterdepolarizations in human myocytes.
J Mol Cell Cardiol. 2016 Jul;96:63-71. doi: 10.1016/j.yjmcc.2015.07.030. Epub 2015 Aug 1.
8
Ionic determinants of functional reentry in a 2-D model of human atrial cells during simulated chronic atrial fibrillation.
Biophys J. 2005 Jun;88(6):3806-21. doi: 10.1529/biophysj.105.060459. Epub 2005 Mar 25.
9
Role of up-regulation of IK1 in action potential shortening associated with atrial fibrillation in humans.
Cardiovasc Res. 2005 Jun 1;66(3):493-502. doi: 10.1016/j.cardiores.2005.01.020. Epub 2005 Feb 24.

引用本文的文献

2
Dominant ionic currents in rabbit ventricular action potential dynamics.
PLoS One. 2025 Jul 30;20(7):e0328261. doi: 10.1371/journal.pone.0328261. eCollection 2025.
4
and Atrial Fibrillation: Insights into Their Inter-Relationship.
Rev Cardiovasc Med. 2025 Apr 18;26(4):26911. doi: 10.31083/RCM26911. eCollection 2025 Apr.
5
Genetic and Molecular Underpinnings of Atrial Fibrillation.
NPJ Cardiovasc Health. 2024;1. doi: 10.1038/s44325-024-00035-5. Epub 2024 Dec 4.
7
Fast interactive simulations of cardiac electrical activity in anatomically accurate heart structures by compressing sparse uniform cartesian grids.
Comput Methods Programs Biomed. 2024 Dec;257:108456. doi: 10.1016/j.cmpb.2024.108456. Epub 2024 Oct 24.
8
Connecting transcriptomics with computational modeling to reveal developmental adaptations in pediatric human atrial tissue.
Am J Physiol Heart Circ Physiol. 2024 Dec 1;327(6):H1413-H1430. doi: 10.1152/ajpheart.00474.2024. Epub 2024 Oct 25.
9
Mechanisms of Chemical Atrial Defibrillation by Flecainide and Ibutilide.
JACC Clin Electrophysiol. 2024 Dec;10(12):2658-2673. doi: 10.1016/j.jacep.2024.08.009. Epub 2024 Oct 9.
10
Impaired Intracellular Calcium Buffering Contributes to the Arrhythmogenic Substrate in Atrial Myocytes From Patients With Atrial Fibrillation.
Circulation. 2024 Aug 13;150(7):544-559. doi: 10.1161/CIRCULATIONAHA.123.066577. Epub 2024 Jun 24.

本文引用的文献

1
Local control of β-adrenergic stimulation: Effects on ventricular myocyte electrophysiology and Ca(2+)-transient.
J Mol Cell Cardiol. 2011 May;50(5):863-71. doi: 10.1016/j.yjmcc.2011.02.007. Epub 2011 Feb 21.
3
Déjà vu in the theories of atrial fibrillation dynamics.
Cardiovasc Res. 2011 Mar 1;89(4):766-75. doi: 10.1093/cvr/cvq364. Epub 2010 Nov 19.
4
Targeting atrioventricular differences in ion channel properties for terminating acute atrial fibrillation in pigs.
Cardiovasc Res. 2011 Mar 1;89(4):843-51. doi: 10.1093/cvr/cvq359. Epub 2010 Nov 13.
5
The ryanodine receptor channel as a molecular motif in atrial fibrillation: pathophysiological and therapeutic implications.
Cardiovasc Res. 2011 Mar 1;89(4):734-43. doi: 10.1093/cvr/cvq324. Epub 2010 Oct 12.
7
Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation.
Circ Arrhythm Electrophysiol. 2010 Oct;3(5):472-80. doi: 10.1161/CIRCEP.110.954636. Epub 2010 Jul 24.
10
New antiarrhythmic drugs for treatment of atrial fibrillation.
Lancet. 2010 Apr 3;375(9721):1212-23. doi: 10.1016/S0140-6736(10)60096-7. Epub 2010 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验