Suppr超能文献

利用运动单位放电信息估计手指屈伸过程中的灵巧力

Dexterous Force Estimation during Finger Flexion and Extension Using Motor Unit Discharge Information.

作者信息

Zheng Yang, Hu Xiaogang

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3130-3133. doi: 10.1109/EMBC44109.2020.9175236.

Abstract

With the development of advanced robotic hands, a reliable neural-machine interface is essential to take full advantage of the functional dexterity of the robots. In this preliminary study, we developed a novel method to estimate isometric forces of individual fingers continuously and concurrently during dexterous finger flexion and extension. Specifically, motor unit (MU) discharge activity was extracted from the surface high-density electromyogram (EMG) signals recorded from the finger extensors and flexors, respectively. The MU information was separated into different groups to be associated with the flexion or extension of individual fingers and was then used to predict individual finger forces during multi-finger flexion and extension tasks. Compared with the conventional EMG amplitude-based method, our method can obtain a better force estimation performance (a higher correlation and a smaller estimation error between the predicted and the measured force) when a linear regression model was used. Further exploration of our method can potentially provide a robust neural-machine interface for intuitive control of robotic hands.

摘要

随着先进机器人手的发展,可靠的神经机器接口对于充分利用机器人的功能灵活性至关重要。在这项初步研究中,我们开发了一种新颖的方法,用于在手指进行灵巧的屈伸过程中连续且同时地估计单个手指的等长力。具体而言,运动单元(MU)放电活动分别从记录自手指伸肌和屈肌的表面高密度肌电图(EMG)信号中提取。MU信息被分成不同组,以与单个手指的屈伸相关联,然后用于预测多手指屈伸任务期间的单个手指力。当使用线性回归模型时,与传统的基于EMG幅度的方法相比,我们的方法能够获得更好的力估计性能(预测力与测量力之间具有更高的相关性和更小的估计误差)。对我们方法的进一步探索可能为机器人手的直观控制提供一个强大的神经机器接口。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验