Suppr超能文献

基于单通道脑电图信号常见频率模式的睡眠阶段分析与分类

Analysis and Classification of Sleep Stages Based on Common Frequency Pattern From a Single-Channel EEG Signal.

作者信息

Huang Shoulin, Zhu Junhua, Chen Yang, Wang Tong, Ma Ting

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3711-3714. doi: 10.1109/EMBC44109.2020.9176024.

Abstract

One crucial key of developing an automatic sleep stage scoring method is to extract discriminative features. In this paper, we present a novel technique, termed common frequency pattern (CFP), to extract the variance features from a single-channel electroencephalogram (EEG) signal for sleep stage classification. The learning task is formulated by finding significant frequency patterns that maximize variance for one class and that at the same time, minimize variance for the other class. The proposed methodology for automated sleep scoring is tested on the benchmark Sleep-EDF database and finally achieves 97.9%, 94.22%, and 90.16% accuracy for two-state, three-state, and five-state classification of sleep stages. Experimental results demonstrate that the proposed method identifies discriminative characteristics of sleep stages robustly and achieves better performance as compared to the state-of-the-art sleep staging algorithms. Apart from the enhanced classification, the frequency patterns that are determined by the CFP algorithm is able to find the most significant bands of frequency for classification and could be helpful for a better understanding of the mechanisms of sleep stages.

摘要

开发自动睡眠阶段评分方法的一个关键要点是提取具有区分性的特征。在本文中,我们提出了一种名为共同频率模式(CFP)的新技术,用于从单通道脑电图(EEG)信号中提取方差特征,以进行睡眠阶段分类。通过找到能使一类的方差最大化,同时使另一类的方差最小化的显著频率模式来制定学习任务。所提出的自动睡眠评分方法在基准Sleep-EDF数据库上进行了测试,最终在睡眠阶段的二分类、三分类和五分类中分别达到了97.9%、94.22%和90.16%的准确率。实验结果表明,与当前最先进的睡眠分期算法相比,该方法能够稳健地识别睡眠阶段的区分性特征,并取得了更好的性能。除了增强的分类效果外,由CFP算法确定的频率模式能够找到用于分类的最重要频率带,有助于更好地理解睡眠阶段的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验