Suppr超能文献

使用深度生成模型进行数据驱动的肌电图信号生成的可行性

Feasibility of Data-driven EMG Signal Generation using a Deep Generative Model.

作者信息

Campbell Evan, Cameron James A D, Scheme Erik

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3755-3758. doi: 10.1109/EMBC44109.2020.9176072.

Abstract

Despite recent advancements in the field of pattern recognition-based myoelectric control, the collection of a high quality training set remains a challenge limiting its adoption. This paper proposes a framework for a possible solution by augmenting short training protocols with subject-specific synthetic electromyography (EMG) data generated using a deep generative network, known as SinGAN. The aim of this work is to produce high quality synthetic data that could improve classification accuracy when combined with a limited training protocol. SinGAN was used to generate 1000 synthetic windows of EMG data from a single window of six different motions, and results were evaluated qualitatively, quantitatively, and in a classification task. Qualitative assessment of synthetic data was conducted via visual inspection of principal component analysis projections of real and synthetic feature space. Quantitative assessment of synthetic data revealed 11 of 32 synthetic features had similar location and scale to real features (using univariate two-sample Lepage tests); whereas multivariate distributions were found to be statistically different (p <0.05). Finally, the addition of these synthetic data to a brief training set of real data significantly improved classification accuracy in a cross-validation testing scheme by 5.4% (p <0.001).

摘要

尽管基于模式识别的肌电控制领域最近取得了进展,但高质量训练集的收集仍然是一个限制其应用的挑战。本文提出了一个可能的解决方案框架,通过使用一种名为SinGAN的深度生成网络生成的特定于受试者的合成肌电图(EMG)数据来扩充简短的训练协议。这项工作的目的是生成高质量的合成数据,当与有限的训练协议相结合时,可以提高分类准确率。SinGAN被用于从六个不同动作的单个窗口生成1000个EMG数据的合成窗口,并对结果进行了定性、定量和分类任务评估。通过对真实和合成特征空间的主成分分析投影进行目视检查,对合成数据进行了定性评估。合成数据的定量评估显示,32个合成特征中有11个与真实特征具有相似的位置和尺度(使用单变量双样本Lepage检验);而多变量分布在统计学上存在差异(p<0.05)。最后,在交叉验证测试方案中,将这些合成数据添加到简短的真实数据训练集中,显著提高了分类准确率5.4%(p<0.001)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验