Li Zishen, Lam Yun Wah, Liu Qi, Lau Alison Y K, Yu Au-Yeung Ho, Chan Rosa H M
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5464-5467. doi: 10.1109/EMBC44109.2020.9175850.
In vitro cytotoxicity screening is a crucial step of anticancer drug discovery. The application of deep learning methodology is gaining increasing attentions in processing drug screening data and studying anticancer mechanisms of chemical compounds. In this work, we explored the utilization of convolutional neural network in modeling the anticancer efficacy of small molecules. In particular, we presented a VGG19 model trained on 2D structural formulae to predict the growth-inhibitory effects of compounds against leukemia cell line CCRF-CEM, without any use of chemical descriptors. The model achieved a normalized RMSE of 15.76% on predicting growth inhibition and a Pearson Correlation Coefficient of 0.72 between predicted and experimental data, demonstrating a strong predictive power in this task. Furthermore, we implemented the Layer-wise Relevance Propagation technique to interpret the network and visualize the chemical groups predicted by the model that contribute to toxicity with human-readable representations.Clinical relevance-This work predicts the cytotoxicity of chemical compounds against human leukemic lymphoblast CCRF-CEM cell lines on a continuous scale, which only requires 2D images of the structural formulae of the compounds as inputs. Knowledge in the structure-toxicity relationship of small molecules will potentially increase the hit rate of primary drug screening assays.
体外细胞毒性筛选是抗癌药物发现的关键步骤。深度学习方法在处理药物筛选数据和研究化合物的抗癌机制方面越来越受到关注。在这项工作中,我们探索了卷积神经网络在小分子抗癌疗效建模中的应用。具体而言,我们提出了一种在二维结构式上训练的VGG19模型,用于预测化合物对白血病细胞系CCRF-CEM的生长抑制作用,而无需使用任何化学描述符。该模型在预测生长抑制方面的归一化均方根误差为15.76%,预测数据与实验数据之间的皮尔逊相关系数为0.72,表明在这项任务中具有很强的预测能力。此外,我们实施了逐层相关传播技术来解释网络,并以人类可读的表示形式可视化模型预测的对毒性有贡献的化学基团。临床相关性——这项工作以连续尺度预测化合物对人白血病淋巴母细胞CCRF-CEM细胞系的细胞毒性,其仅需要化合物结构式的二维图像作为输入。小分子结构-毒性关系方面的知识可能会提高初级药物筛选试验的命中率。