Suppr超能文献

通过自发言语的副语言声学特征预测简易精神状态检查表得分

Predicting Mini-Mental Status Examination Scores through Paralinguistic Acoustic Features of Spontaneous Speech.

作者信息

Fu Ziyang, Haider Fasih, Luz Saturnino

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5548-5552. doi: 10.1109/EMBC44109.2020.9175379.

Abstract

Speech analysis could provide an indicator of cognitive health and help develop clinical tools for automatically detecting and monitoring cognitive health progression. The Mini Mental Status Examination (MMSE) is the most widely used screening tool for cognitive health. But the manual operation of MMSE restricts its screening within primary care facilities. An automatic screening tool has the potential to remedy this situation. This study aims to assess the association between acoustic features of spontaneous speech and assess whether acoustic features can be used to automatically predict MMSE score. We assessed the effectiveness of paralinguistic feature set for MMSE score prediction on a balanced sample of DementiaBank's Pitt spontaneous speech dataset, with patients matched by gender and age. Linear regression analysis shows that fusion of acoustic features, age, sex and years of education provides better results (mean absolute error, MAE = 4.97, and R = 0.261) than acoustic features alone (MAE = 5.66 and R =0.125) and age, gender and education level alone (MAE of 5.36 and R =0.17). This suggests that the acoustic features of spontaneous speech are an important part of an automatic screening tool for cognitive impairment detection.Clinical relevance- We hereby present a method for automatic screening of cognitive health. It is based on acoustic information of speech, a ubiquitous source of data, therefore being cost-efficient, non-invasive and with little infrastructure required.

摘要

言语分析可以提供认知健康的指标,并有助于开发用于自动检测和监测认知健康进展的临床工具。简易精神状态检查表(MMSE)是认知健康领域使用最广泛的筛查工具。但MMSE的人工操作限制了其在初级保健机构中的筛查范围。自动筛查工具有可能改善这种情况。本研究旨在评估自然言语声学特征之间的关联,并评估声学特征是否可用于自动预测MMSE评分。我们在痴呆症银行的匹兹堡自然言语数据集的平衡样本上评估了副语言特征集对MMSE评分预测的有效性,患者按性别和年龄进行匹配。线性回归分析表明,融合声学特征、年龄、性别和受教育年限比单独使用声学特征(平均绝对误差,MAE = 5.66,R = 0.125)以及单独使用年龄、性别和教育水平(MAE为5.36,R = 0.17)能产生更好的结果(平均绝对误差,MAE = 4.97,R = 0.261)。这表明自然言语的声学特征是认知障碍检测自动筛查工具的重要组成部分。临床相关性——我们在此提出一种认知健康自动筛查方法。它基于言语的声学信息,而言语是一种普遍存在的数据来源,因此具有成本效益、非侵入性且所需基础设施较少。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验