Suppr超能文献

用于肝细胞癌无创基因突变预测的多阶段跨模态学习

Multi-Phase Cross-modal Learning for Noninvasive Gene Mutation Prediction in Hepatocellular Carcinoma.

作者信息

Gu Jiapan, Zhao Ziyuan, Zeng Zeng, Wang Yuzhe, Qiu Zhengyiren, Veeravalli Bharadwaj, Poh Goh Brian Kim, Kunnath Bonney Glenn, Madhavan Krishnakumar, Ying Chan Wan, Kheng Choon Lim, Hua Thng Choon, Chow Pierce K H

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5814-5817. doi: 10.1109/EMBC44109.2020.9176677.

Abstract

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the fourth most common cause of cancer-related death worldwide. Understanding the underlying gene mutations in HCC provides great prognostic value for treatment planning and targeted therapy. Radiogenomics has revealed an association between non-invasive imaging features and molecular genomics. However, imaging feature identification is laborious and error-prone. In this paper, we propose an end-to-end deep learning framework for mutation prediction in APOB, COL11A1 and ATRX genes using multiphasic CT scans. Considering intra-tumour heterogeneity (ITH) in HCC, multi-region sampling technology is implemented to generate the dataset for experiments. Experimental results demonstrate the effectiveness of the proposed model.

摘要

肝细胞癌(HCC)是原发性肝癌最常见的类型,也是全球癌症相关死亡的第四大常见原因。了解HCC潜在的基因突变可为治疗规划和靶向治疗提供重要的预后价值。放射基因组学揭示了非侵入性成像特征与分子基因组学之间的关联。然而,成像特征识别既费力又容易出错。在本文中,我们提出了一个端到端的深度学习框架,用于使用多期CT扫描预测载脂蛋白B(APOB)、11型胶原蛋白α1链(COL11A1)和α-地中海贫血/智力低下综合征X连锁基因(ATRX)的突变。考虑到HCC中的肿瘤内异质性(ITH),采用多区域采样技术生成实验数据集。实验结果证明了所提模型的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验