Gu Jiapan, Zhao Ziyuan, Zeng Zeng, Wang Yuzhe, Qiu Zhengyiren, Veeravalli Bharadwaj, Poh Goh Brian Kim, Kunnath Bonney Glenn, Madhavan Krishnakumar, Ying Chan Wan, Kheng Choon Lim, Hua Thng Choon, Chow Pierce K H
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5814-5817. doi: 10.1109/EMBC44109.2020.9176677.
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the fourth most common cause of cancer-related death worldwide. Understanding the underlying gene mutations in HCC provides great prognostic value for treatment planning and targeted therapy. Radiogenomics has revealed an association between non-invasive imaging features and molecular genomics. However, imaging feature identification is laborious and error-prone. In this paper, we propose an end-to-end deep learning framework for mutation prediction in APOB, COL11A1 and ATRX genes using multiphasic CT scans. Considering intra-tumour heterogeneity (ITH) in HCC, multi-region sampling technology is implemented to generate the dataset for experiments. Experimental results demonstrate the effectiveness of the proposed model.
肝细胞癌(HCC)是原发性肝癌最常见的类型,也是全球癌症相关死亡的第四大常见原因。了解HCC潜在的基因突变可为治疗规划和靶向治疗提供重要的预后价值。放射基因组学揭示了非侵入性成像特征与分子基因组学之间的关联。然而,成像特征识别既费力又容易出错。在本文中,我们提出了一个端到端的深度学习框架,用于使用多期CT扫描预测载脂蛋白B(APOB)、11型胶原蛋白α1链(COL11A1)和α-地中海贫血/智力低下综合征X连锁基因(ATRX)的突变。考虑到HCC中的肿瘤内异质性(ITH),采用多区域采样技术生成实验数据集。实验结果证明了所提模型的有效性。