Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy.
Int J Mol Sci. 2020 Oct 1;21(19):7267. doi: 10.3390/ijms21197267.
The carotid body may undergo plasticity changes during development/ageing and in response to environmental (hypoxia and hyperoxia), metabolic, and inflammatory stimuli. The different cell types of the carotid body express a wide series of growth factors and corresponding receptors, which play a role in the modulation of carotid body function and plasticity. In particular, type I cells express nerve growth factor, brain-derived neurotrophic factor, neurotrophin 3, glial cell line-derived neurotrophic factor, ciliary neurotrophic factor, insulin-like-growth factor-I and -II, basic fibroblast growth factor, epidermal growth factor, transforming growth factor-α and -β, interleukin-1β and -6, tumor necrosis factor-α, vascular endothelial growth factor, and endothelin-1. Many specific growth factor receptors have been identified in type I cells, indicating autocrine/paracrine effects. Type II cells may also produce growth factors and express corresponding receptors. Future research will have to consider growth factors in further experimental models of cardiovascular, metabolic, and inflammatory diseases and in human (normal and pathologic) samples. From a methodological point of view, microarray and/or proteomic approaches would permit contemporary analyses of large groups of growth factors. The eventual identification of physical interactions between receptors of different growth factors and/or neuromodulators could also add insights regarding functional interactions between different trophic mechanisms.
颈动脉体在发育/衰老过程中以及在应对环境(缺氧和高氧)、代谢和炎症刺激时可能发生可塑性变化。颈动脉体的不同细胞类型表达广泛的生长因子系列及其相应的受体,这些生长因子和受体在调节颈动脉体功能和可塑性方面发挥作用。特别是,I 型细胞表达神经生长因子、脑源性神经营养因子、神经生长因子 3、胶质细胞源性神经营养因子、睫状神经营养因子、胰岛素样生长因子-I 和 -II、碱性成纤维细胞生长因子、表皮生长因子、转化生长因子-α 和 -β、白细胞介素-1β 和 -6、肿瘤坏死因子-α、血管内皮生长因子和内皮素-1。I 型细胞中已经鉴定出许多特定的生长因子受体,表明存在自分泌/旁分泌作用。II 型细胞也可能产生生长因子并表达相应的受体。未来的研究将不得不考虑在心血管、代谢和炎症疾病的进一步实验模型以及人类(正常和病理)样本中生长因子的作用。从方法学的角度来看,微阵列和/或蛋白质组学方法将允许对大量生长因子进行同时分析。不同生长因子和/或神经调质受体之间的物理相互作用的最终确定也可以提供有关不同营养机制之间功能相互作用的见解。