Suppr超能文献

基于 Neutrosophic 相似度得分的超声图像增强方法。

An Ultrasound Image Enhancement Method Using Neutrosophic Similarity Score.

机构信息

Thapar Institute of Engineering and Technology, Patiala, India.

出版信息

Ultrason Imaging. 2020 Nov;42(6):271-283. doi: 10.1177/0161734620961005.

Abstract

Ultrasound images, having low contrast and noise, adversely impact in the detection of abnormalities. In view of this, an enhancement method is proposed in this work to reduce noise and improve contrast of ultrasound images. The proposed method is based on scaling with neutrosophic similarity score (NSS), where an image is represented in the neutrosophic domain through three membership subsets , and denoting the degree of truth, indeterminacy, and falseness, respectively. The NSS measures the belonging degree of pixel to the texture using multi-criteria that is based on intensity, local mean intensity and edge detection. Then, NSS is utilized to extract the enhanced coefficient and this enhanced coefficient is applied to scale the input image. This scaling reflects contrast improvement and denoising effect on ultrasound images. The performance of proposed enhancement method is evaluated on clinical ultrasound images, using both subjective and objective image quality measures. In subjective evaluation, with proposed method, overall best score of 4.3 was obtained and that was 44% higher than the score of original images. These results were also supported by objective measures. The results demonstrated that the proposed method outperformed the other methods in terms of mean brightness preservation, edge preservation, structural similarity, and human perception-based image quality assessment. Thus, the proposed method can be used in computer-aided diagnosis systems and to visually assist radiologists in their interactive-decision-making task.

摘要

超声图像对比度和噪声低,对异常的检测有不利影响。鉴于此,本工作提出了一种增强方法,以降低噪声并提高超声图像的对比度。所提出的方法基于具有 Neutrosophic 相似性得分 (NSS) 的缩放,其中通过三个隶属度子集 和 来表示图像在 Neutrosophic 域中的表示,分别表示真实性、不确定性和虚假性的程度。NSS 使用基于强度、局部平均强度和边缘检测的多标准来测量像素对纹理的归属程度。然后,利用 NSS 提取增强系数,并将该增强系数应用于缩放输入图像。这种缩放反映了对超声图像的对比度改善和去噪效果。使用主观和客观图像质量度量标准,对临床超声图像评估了所提出的增强方法的性能。在主观评估中,使用所提出的方法获得了总体最佳得分为 4.3,比原始图像的得分高 44%。这些结果也得到了客观指标的支持。结果表明,在所提出的方法在平均亮度保持、边缘保持、结构相似性和基于人类感知的图像质量评估方面均优于其他方法。因此,所提出的方法可用于计算机辅助诊断系统,并在视觉上帮助放射科医生进行交互式决策任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验