Department of Biology and Biochemistry Program, Allegheny College, Meadville, Pennsylvania 16335
Genetics. 2020 Oct;216(2):333-342. doi: 10.1534/genetics.120.303493.
Recent work by Kentaro Ohkuni and colleagues exemplifies how a series of molecular mechanisms contribute to a cellular outcome-equal distribution of chromosomes. Failure to maintain structural and numerical integrity of chromosomes is one contributing factor in genetic diseases such as cancer. Specifically, the authors investigated molecular events surrounding centromeric histone H3 variant Cse4 deposition-a process important for chromosome segregation, using as a model organism. This study illustrates an example of a post-translational modification-sumoylation-regulating a cellular process and the concept of genetic interactions (, synthetic dosage lethality). Furthermore, the study highlights the importance of using diverse experimental approaches in answering a few key research questions. The authors used molecular biology techniques (, qPCR), biochemical experiments (, Ni-NTA/8His protein purification), as well as genetic approaches to understand the regulation of Cse4 At a big-picture level, the study reveals how genetic changes can lead to subsequent molecular and cellular changes.
近 Kentaro Ohkuni 和同事的研究工作举例说明了一系列分子机制如何导致细胞结果——染色体的均等分配。无法维持染色体的结构和数量完整性是癌症等遗传疾病的一个促成因素。具体而言,作者使用 作为模式生物,研究了围绕着着丝粒组蛋白 H3 变体 Cse4 沉积的分子事件——这是一个对于染色体分离很重要的过程。这项研究说明了一种翻译后修饰——SUMOylation 调节细胞过程和遗传相互作用(基因内互补,合成剂量致死性)的例子。此外,该研究强调了使用多种实验方法来回答一些关键研究问题的重要性。作者使用分子生物学技术(例如 qPCR)、生化实验(例如 Ni-NTA/8His 蛋白纯化)以及遗传方法来理解 Cse4 的调节。从大局来看,该研究揭示了遗传变化如何导致随后的分子和细胞变化。