Suppr超能文献

基于小波变换的非平稳 NDVI 时间序列改进趋势植被分析。

An improved trend vegetation analysis for non-stationary NDVI time series based on wavelet transform.

机构信息

Laboratoire RIADI, Ecole Nationale des Sciences de l'Informatique, Mannouba, Tunisia.

Departament de Física de la Terra i Termodinàmica, Universitat de Valencia, València, Spain.

出版信息

Environ Sci Pollut Res Int. 2021 Sep;28(34):46603-46613. doi: 10.1007/s11356-020-10867-0. Epub 2020 Oct 8.

Abstract

The aim of this paper is to improve trend analysis for non-stationary Normalized Difference Vegetation Index (NDVI) time series (TS) over different areas in Tunisia based on the wavelet transform (WT) multi-resolution analysis (MRA-WT), statistical test, and meteorological data. The MRA-WT was applied in order to decompose the TS into different components. However, the most challenge for TS analysis using MRA-WT laid in the selection of two optimum parameters: the level of decomposition and mother wavelet (MW). In this work, both factors were investigated. Firstly, the level of decomposition was calculated for 18 different MWs, and secondly the energy to Shannon entropy ratio criterion was investigated to choose the most suitable MW. The Mann-Kendall test (MK) and Sen's slope were applied to the last approximation component in order to analyze long-term vegetation changes. Finally, the influence of meteorological data for trend was analyzed. The results were first computed for different sites in Tunisia using MODIS NDVI TS from 2001 to 2017. The obtained results proved the importance of MW selection. Level 5 was considered for the TS as the best level of decomposition for long-term vegetation changes. The Daubechies and Symlets MWs (db9 and sym4) showed the highest energy to entropy ratio for three selected vegetation canopies. A combination of the two MW was proposed to derive a trend vegetation analysis at image level. A degradation in the forest area and a few increases in cropland and vegetation area were presented.

摘要

本文旨在基于小波变换(WT)多分辨率分析(MRA-WT)、统计检验和气象数据,改进突尼斯不同地区非平稳归一化差异植被指数(NDVI)时间序列(TS)的趋势分析。MRA-WT 被应用于将 TS 分解为不同的分量。然而,使用 MRA-WT 对 TS 进行分析的最大挑战在于选择两个最佳参数:分解级别和母小波(MW)。在这项工作中,这两个因素都进行了研究。首先,为 18 种不同的 MW 计算了分解级别,其次,研究了能量与香农熵比准则以选择最合适的 MW。Mann-Kendall 检验(MK)和 Sen 斜率被应用于最后一个逼近分量,以分析长期植被变化。最后,分析了气象数据对趋势的影响。首先使用 2001 年至 2017 年 MODIS NDVI TS 在突尼斯的不同地点计算了结果。结果证明了 MW 选择的重要性。对于长期植被变化,TS 的第 5 级被认为是最佳分解级别。Daubechies 和 Symlets MW(db9 和 sym4)在三个选定的植被冠层中表现出最高的能量与熵比。提出了两种 MW 的组合来进行图像级的趋势植被分析。森林面积减少,耕地和植被面积略有增加。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验