Suppr超能文献

用于肿瘤蛋白质组学应用的数据非依赖采集质谱法(DIA-MS)。

Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology.

作者信息

Krasny Lukas, Huang Paul H

机构信息

Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.

出版信息

Mol Omics. 2021 Feb 1;17(1):29-42. doi: 10.1039/d0mo00072h. Epub 2020 Oct 9.

Abstract

Data-independent acquisition mass spectrometry (DIA-MS) is a next generation proteomic methodology that generates permanent digital proteome maps offering highly reproducible retrospective analysis of cellular and tissue specimens. The adoption of this technology has ushered a new wave of oncology studies across a wide range of applications including its use in molecular classification, oncogenic pathway analysis, drug and biomarker discovery and unravelling mechanisms of therapy response and resistance. In this review, we provide an overview of the experimental workflows commonly used in DIA-MS, including its current strengths and limitations versus conventional data-dependent acquisition mass spectrometry (DDA-MS). We further summarise a number of key studies to illustrate the power of this technology when applied to different facets of oncology. Finally we offer a perspective of the latest innovations in DIA-MS technology and machine learning-based algorithms necessary for driving the development of high-throughput, in-depth and reproducible proteomic assays that are compatible with clinical diagnostic workflows, which will ultimately enable the delivery of precision cancer medicine to achieve optimal patient outcomes.

摘要

数据非依赖型采集质谱法(DIA-MS)是一种新一代蛋白质组学方法,它能生成永久性数字蛋白质组图谱,为细胞和组织样本提供高度可重复的回顾性分析。这项技术的应用开创了肿瘤学研究的新潮流,其应用范围广泛,包括分子分类、致癌途径分析、药物和生物标志物发现以及揭示治疗反应和耐药机制等。在本综述中,我们概述了DIA-MS中常用的实验工作流程,包括其与传统数据依赖型采集质谱法(DDA-MS)相比目前的优势和局限性。我们进一步总结了一些关键研究,以说明该技术应用于肿瘤学不同方面时的强大作用。最后,我们展望了DIA-MS技术和基于机器学习的算法的最新创新,这些对于推动与临床诊断工作流程兼容的高通量、深入且可重复的蛋白质组学检测的发展至关重要,这最终将实现精准癌症医学,以达到最佳的患者治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验