School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164, USA.
Lumencor Inc, 14940 NW Greenbrier Parkway, Beaverton, OR 97006, USA.
Plant Cell Physiol. 2020 Oct 1;61(10):1699-1710. doi: 10.1093/pcp/pcaa093.
Forisomes are protein bodies known exclusively from sieve elements of legumes. Forisomes contribute to the regulation of phloem transport due to their unique Ca2+-controlled, reversible swelling. The assembly of forisomes from sieve element occlusion (SEO) protein monomers in developing sieve elements and the mechanism(s) of Ca2+-dependent forisome contractility are poorly understood because the amino acid sequences of SEO proteins lack conventional protein-protein interaction and Ca2+-binding motifs. We selected amino acids potentially responsible for forisome-specific functions by analyzing SEO protein sequences in comparison to those of the widely distributed SEO-related (SEOR), or SEOR proteins. SEOR proteins resemble SEO proteins closely but lack any Ca2+ responsiveness. We exchanged identified candidate residues by directed mutagenesis of the Medicago truncatula SEO1 gene, expressed the mutated genes in yeast (Saccharomyces cerevisiae) and studied the structural and functional phenotypes of the forisome-like bodies that formed in the transgenic cells. We identified three aspartate residues critical for Ca2+ responsiveness and two more that were required for forisome-like bodies to assemble. The phenotypes observed further suggested that Ca2+-controlled and pH-inducible swelling effects in forisome-like bodies proceeded by different yet interacting mechanisms. Finally, we observed a previously unknown surface striation in native forisomes and in recombinant forisome-like bodies that could serve as an indicator of successful forisome assembly. To conclude, this study defines a promising path to the elucidation of the so-far elusive molecular mechanisms of forisome assembly and Ca2+-dependent contractility.
类蛋白体是仅存在于豆科植物筛管中的蛋白体。类蛋白体通过其独特的 Ca2+ 控制的可逆肿胀,有助于调节韧皮部运输。由于筛管阻塞蛋白(SEO)单体在发育中的筛管中组装成类蛋白体以及 Ca2+ 依赖性类蛋白体收缩的机制知之甚少,因为 SEO 蛋白的氨基酸序列缺乏常规的蛋白-蛋白相互作用和 Ca2+ 结合基序。我们通过分析 SEO 蛋白序列与广泛分布的 SEO 相关(SEOR)或 SEOR 蛋白的序列比较,选择了可能负责类蛋白体特异性功能的氨基酸。SEOR 蛋白与 SEO 蛋白非常相似,但缺乏任何 Ca2+ 反应性。我们通过定向突变 Medicago truncatula SEO1 基因来交换鉴定出的候选残基,在酵母(酿酒酵母)中表达突变基因,并研究了在转基因细胞中形成的类蛋白体样体的结构和功能表型。我们确定了三个天冬氨酸残基对于 Ca2+ 反应性是关键的,另外两个残基对于类蛋白体样体的组装是必需的。观察到的表型进一步表明,类蛋白体样体中的 Ca2+-控制和 pH 诱导的肿胀效应是通过不同但相互作用的机制进行的。最后,我们观察到天然类蛋白体和重组类蛋白体样体中以前未知的表面条纹,这可以作为成功组装类蛋白体的指标。总之,这项研究为阐明迄今为止难以捉摸的类蛋白体组装和 Ca2+ 依赖性收缩的分子机制提供了一个有希望的途径。