Ahmed Faheem, Almutairi Ghzzai, AlOtaibi Bandar, Kumar Shalendra, Arshi Nishat, Hussain Syed Ghazanfar, Umar Ahmad, Ahmad Naushad, Aljaafari Abdullah
Department of Physics, College of Science, King Faisal University, P.O. Box-400, Al-Ahsa 31982, Saudi Arabia.
National Center for Energy Storage Technologies, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia.
Nanomaterials (Basel). 2020 Oct 7;10(10):1979. doi: 10.3390/nano10101979.
Herein, for the first time, the growth of ZnO nanorods directly on aluminum (Al) substrate via a low temperature (80 °C) wet chemical method, and used as binder-free electrode for supercapacitors were reported. XRD pattern and HRTEM images showed that high crystalline nanorods grown on Al substrate with c-axis orientation. Morphological studies revealed that the nanorods possessed well defined hexagon phase with length and diameter of ~2 µm and 100-180 nm, respectively. Raman spectrum of ZnO nanorods showed that the characteristic E mode corresponds to the vibration associated with the oxygen atoms of ZnO. The optical properties of ZnO nanorods studied using Room-temperature PL spectra revealed a near-band-edge (NBE) peak at ~388 nm emission and deep level (DLE) at ~507 nm. Electrochemical measurements showed that ZnO nanorods on Al substrate exhibited remarkably enhanced performance as electrode for supercapacitors with a value of specific capacitance of 394 F g measured with scan rate of 20 mV s. This unique nanorods structures also exhibited excellent stability of >98% capacitance retention for 1000 cycles that were measured at 1A g. The presented easy and cost-effective method might open up the possibility for the mass production of binder-free electrodes for efficient electrochemical energy storage devices.
在此,首次报道了通过低温(80°C)湿化学方法在铝(Al)衬底上直接生长ZnO纳米棒,并将其用作超级电容器的无粘结剂电极。XRD图谱和HRTEM图像表明,在Al衬底上生长的具有c轴取向的高结晶度纳米棒。形态学研究表明,纳米棒具有明确的六方相,长度和直径分别约为2 µm和100 - 180 nm。ZnO纳米棒的拉曼光谱表明,特征E模式对应于与ZnO氧原子相关的振动。使用室温PL光谱研究的ZnO纳米棒的光学性质显示,在约388 nm发射处有近带边(NBE)峰,在约507 nm处有深能级(DLE)。电化学测量表明,Al衬底上的ZnO纳米棒作为超级电容器电极表现出显著增强的性能,在20 mV s的扫描速率下测量的比电容值为394 F g。这种独特的纳米棒结构在1A g下测量的1000次循环中也表现出>98%的电容保持率的优异稳定性。所提出的简单且经济高效的方法可能为高效电化学储能装置的无粘结剂电极的大规模生产开辟可能性。