German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany.
J Neurochem. 2021 Feb;156(3):324-336. doi: 10.1111/jnc.15210. Epub 2020 Oct 22.
Optogenetic manipulations have transformed neuroscience in recent years. While sophisticated tools now exist for controlling the firing patterns of neurons, it remains challenging to optogenetically define the plasticity state of individual synapses. A variety of synapses in the mammalian brain express presynaptic long-term potentiation (LTP) upon elevation of presynaptic cyclic adenosine monophosphate (cAMP), but the molecular expression mechanisms as well as the impact of presynaptic LTP on network activity and behavior are not fully understood. In order to establish optogenetic control of presynaptic cAMP levels and thereby presynaptic potentiation, we developed synaptoPAC, a presynaptically targeted version of the photoactivated adenylyl cyclase bPAC. In cultures of hippocampal granule cells of Wistar rats, activation of synaptoPAC with blue light increased action potential-evoked transmission, an effect not seen in hippocampal cultures of non-granule cells. In acute brain slices of C57BL/6N mice, synaptoPAC activation immediately triggered a strong presynaptic potentiation at mossy fiber synapses in CA3, but not at Schaffer collateral synapses in CA1. Following light-triggered potentiation, mossy fiber transmission decreased within 20 min, but remained enhanced still after 30 min. The optogenetic potentiation altered the short-term plasticity dynamics of release, reminiscent of presynaptic LTP. Our work establishes synaptoPAC as an optogenetic tool that enables acute light-controlled potentiation of transmitter release at specific synapses in the brain, facilitating studies of the role of presynaptic potentiation in network function and animal behavior in an unprecedented manner. Read the Editorial Highlight for this article on page 270.
光遗传学操作近年来改变了神经科学。虽然现在已经有了用于控制神经元放电模式的精密工具,但要对单个突触的可塑性状态进行光遗传学定义仍然具有挑战性。哺乳动物大脑中的各种突触在升高突触前环腺苷单磷酸(cAMP)时表达突触前长时程增强(LTP),但分子表达机制以及突触前 LTP 对网络活动和行为的影响尚未完全了解。为了建立对突触前 cAMP 水平的光遗传学控制,从而实现突触前增强,我们开发了 synaptoPAC,这是一种光激活的腺苷酸环化酶 bPAC 的突触前靶向版本。在 Wistar 大鼠海马颗粒细胞培养物中,用蓝光激活 synaptoPAC 会增加动作电位诱发的传递,而在非颗粒细胞的海马培养物中则不会出现这种情况。在 C57BL/6N 小鼠的急性脑片中,synaptoPAC 的激活立即在 CA3 的苔藓纤维突触上引发强烈的突触前增强,但在 CA1 的 Schaffer 侧枝突触上则没有。光触发增强后,苔藓纤维传递在 20 分钟内下降,但在 30 分钟后仍保持增强。光遗传学增强改变了释放的短期可塑性动力学,类似于突触前 LTP。我们的工作确立了 synaptoPAC 作为一种光遗传学工具,可在大脑中的特定突触上实现急性光控递质释放增强,从而以一种前所未有的方式促进研究突触前增强在网络功能和动物行为中的作用。在第 270 页阅读该文章的编辑重点。