Dixit Nripesh, Pyari Gur, Bansal Himanshu, Roy Sukhdev
Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India.
Sci Rep. 2025 Apr 1;15(1):11166. doi: 10.1038/s41598-025-95355-6.
Precise control of intracellular calcium ([Formula: see text]) concentration at the synaptic neuron terminal can unravel the mechanism behind computation, learning, and memory formation inside the brain. Recently, the discovery of [Formula: see text]-permeable channelrhodopsins (CapChRs) has opened the opportunity to effectively control the intracellular [Formula: see text] concentration using optogenetics. Here, we present a new theoretical model for precise optogenetic control with newly discovered CapChR2 at postsynaptic neuron. A detailed theoretical analysis of coincident stimulation of presynaptic terminal, postsynaptic spine and optogenetic activation of CapChR2-expressing postsynaptic spine shows different ways to control postsynaptic intracellular [Formula: see text] concentration. Irradiance-dependent [Formula: see text] flow is an additional advantage of this novel method. The minimum threshold of light irradiance and optimal ranges of time lag among different stimulations and stimulation frequencies have also been determined. It is shown that synaptic efficacy occurs at 20 µW/mm at coincident electrical stimulation of presynaptic terminal and postsynaptic spine with optogenetic activation of CapChR2-expressed postsynaptic spine. The analysis provides a new means of direct optogenetic control of [Formula: see text]-based synaptic plasticity, better understanding of learning and memory processes, and opens prospects for targeted therapeutic interventions to modulate synaptic function and address various neurological disorders.
精确控制突触神经元末端的细胞内钙([公式:见正文])浓度,有助于揭示大脑内部计算、学习和记忆形成背后的机制。最近,[公式:见正文]通透型视紫红质通道(CapChRs)的发现,为利用光遗传学有效控制细胞内[公式:见正文]浓度提供了契机。在此,我们提出了一种新的理论模型,用于在突触后神经元中利用新发现的CapChR2进行精确的光遗传学控制。对突触前末端、突触后棘突的同时刺激以及表达CapChR2的突触后棘突的光遗传学激活进行详细的理论分析,揭示了控制突触后细胞内[公式:见正文]浓度的不同方法。依赖辐照度的[公式:见正文]流动是这种新方法的另一个优势。我们还确定了光辐照度的最小阈值以及不同刺激之间的最佳时间滞后范围和刺激频率。结果表明,在对突触前末端和突触后棘突进行电刺激同时,对表达CapChR2的突触后棘突进行光遗传学激活时,在20 μW/mm²的光辐照度下会出现突触效能。该分析为基于[公式:见正文]的突触可塑性提供了一种直接光遗传学控制的新手段,有助于更好地理解学习和记忆过程,并为调节突触功能和治疗各种神经系统疾病的靶向治疗干预开辟了前景。