Toxicology Division, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, 3508TD, Utrecht, The Netherlands.
Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort, France.
Arch Toxicol. 2020 Dec;94(12):4055-4065. doi: 10.1007/s00204-020-02927-8. Epub 2020 Oct 10.
In chemical risk assessment, default uncertainty factors are used to account for interspecies and interindividual differences, and differences in toxicokinetics and toxicodynamics herein. However, these default factors come with little scientific support. Therefore, our aim was to develop an in vitro method, using acetylcholinesterase (AChE) inhibition as a proof of principle, to assess both interspecies and interindividual differences in toxicodynamics. Electric eel enzyme and human blood of 20 different donors (12 men/8 women) were exposed to eight different compounds (chlorpyrifos, chlorpyrifos-oxon, phosmet, phosmet-oxon, diazinon, diazinon-oxon, pirimicarb, rivastigmine) and inhibition of AChE was measured using the Ellman method. The organophosphate parent compounds, chlorpyrifos, phosmet and diazinon, did not show inhibition of AChE. All other compounds showed concentration-dependent inhibition of AChE, with ICs in human blood ranging from 0.2-29 µM and ICs ranging from 0.1-18 µM, indicating that AChE is inhibited at concentrations relevant to the in vivo human situation. The oxon analogues were more potent inhibitors of electric eel AChE compared to human AChE. The opposite was true for carbamates, pointing towards interspecies differences for AChE inhibition. Human interindividual variability was low and ranged from 5-25%, depending on the concentration. This study provides a reliable in vitro method for assessing human variability in AChE toxicodynamics. The data suggest that the default uncertainty factor of ~ 3.16 may overestimate human variability for this toxicity endpoint, implying that specific toxicodynamic-related adjustment factors can support quantitative in vitro to in vivo extrapolations that link kinetic and dynamic data to improve chemical risk assessment.
在化学风险评估中,默认不确定性因素用于解释种间和个体间的差异,以及在此处的毒代动力学和毒效动力学差异。然而,这些默认因素几乎没有科学依据。因此,我们的目的是开发一种体外方法,以乙酰胆碱酯酶(AChE)抑制作用作为原理证明,来评估毒效动力学中的种间和个体间差异。使用电鳗酶和 20 名不同供体(12 名男性/8 名女性)的人血,分别暴露于 8 种不同的化合物(毒死蜱、毒死蜱氧、甲拌磷、甲拌磷氧、二嗪农、二嗪农氧、吡虫啉、利斯的明),并使用 Ellman 法测量 AChE 的抑制作用。有机磷母体化合物毒死蜱、甲拌磷和二嗪农没有显示出对 AChE 的抑制作用。所有其他化合物均表现出浓度依赖性的 AChE 抑制作用,在人血中的 IC50 范围为 0.2-29µM,IC50 范围为 0.1-18µM,表明 AChE 在与体内人类情况相关的浓度下被抑制。氧类似物对电鳗 AChE 的抑制作用比对人 AChE 的抑制作用更强。对于氨基甲酸酯类化合物则恰恰相反,这表明 AChE 抑制作用存在种间差异。人类个体间的变异性较低,取决于浓度,范围为 5-25%。本研究提供了一种可靠的体外方法,用于评估人类 AChE 毒效动力学的变异性。数据表明,对于这个毒性终点,默认的不确定性因素约为 3.16,可能高估了人类的变异性,这意味着特定的毒效动力学相关调整因素可以支持定量的体外到体内外推,将动力学和动态数据联系起来,以改善化学风险评估。