Department of Science and Technology, University of Tamanrasset, BP 10034 Sersouf, Tamanrasset, 11000, Algeria.
Leghyd Laboratory, Department of Civil Engineering, University of Sciences and Technology Houari Boumediene , BP 32 Al Alia, BP 32, Bab Ezzouar, Algiers, Algeria.
Environ Monit Assess. 2020 Oct 11;192(11):696. doi: 10.1007/s10661-020-08659-7.
For effective planning of irrigation scheduling, water budgeting, crop simulation, and water resources management, the accurate estimation of reference evapotranspiration (ET) is essential. In the current study, the hybrid support vector regression (SVR) coupled with Whale Optimization Algorithm (SVR-WOA) was employed to estimate the monthly ET at Algiers and Tlemcen meteorological stations positioned in the north of Algeria under three different optimal input scenarios. Monthly climatic parameters, i.e., solar radiation (R), wind speed (U), relative humidity (RH), and maximum and minimum air temperatures (T and T) of 14 years (2000-2013), were obtained from both stations. The accuracy of the hybrid SVR-WOA model was appraised against hybrid SVR-MVO (Multi-Verse Optimizer), and SVR-ALO (Ant Lion Optimizer) models through performance measures, i.e., mean absolute error (MAE), root-mean-square error (RMSE), index of scattering (IOS), index of agreement (IOA), Pearson correlation coefficient (PCC), Nash-Sutcliffe efficiency (NSE), and graphical interpretation (time-variation and scatter plots, radar chart, and Taylor diagram). The results showed that the SVR-WOA model performed superior to the SVR-MVO and SVR-ALO models at both stations in all scenarios. The SVR-WOA-1 model with five inputs (i.e., T T RH, U, R: scenario-1) had the lowest value of MAE = 0.0658/0.0489 mm/month, RMSE = 0.0808/0.0617 mm/month, IOS = 0.0259/0.0165, and the highest value of NSE = 0.9949/0.9989, PCC = 0.9975/0.9995, and IOA = 0.9987/0.9997 for testing period at both stations, respectively. The proposed hybrid SVR-WOA model was found to be more appropriate and efficient in comparison to SVR-MVO and SVR-ALO models for estimating monthly ET in the study region.
为了有效地进行灌溉调度规划、水资源预算、作物模拟和水资源管理,准确估计参考蒸散量(ET)至关重要。在当前的研究中,混合支持向量回归(SVR)与鲸鱼优化算法(WOA)相结合,用于估计位于阿尔及利亚北部的阿尔及尔和特莱姆森气象站在三种不同最优输入情景下的月 ET。月气候参数,即太阳辐射(R)、风速(U)、相对湿度(RH)以及最高和最低空气温度(T 和 T),来自两个气象站,共 14 年(2000-2013 年)的数据。通过性能指标,即平均绝对误差(MAE)、均方根误差(RMSE)、散射指数(IOS)、一致性指数(IOA)、皮尔逊相关系数(PCC)、纳什-苏特克利夫效率(NSE)和图形解释(时间变化和散点图、雷达图和泰勒图)来评估混合 SVR-WOA 模型的准确性,将混合 SVR-WOA 模型与混合 SVR-MVO(多宇宙优化器)和 SVR-ALO(蚁狮优化器)模型进行了比较。结果表明,在所有情景下,SVR-WOA 模型在两个气象站的 SVR-MVO 和 SVR-ALO 模型均表现出更好的性能。具有五个输入的 SVR-WOA-1 模型(即 T T RH、U、R:情景-1)的 MAE 值最低,为 0.0658/0.0489mm/月,RMSE 值最低,为 0.0808/0.0617mm/月,IOS 值为 0.0259/0.0165,NSE 值最高,为 0.9949/0.9989,PCC 值为 0.9975/0.9995,IOA 值为 0.9987/0.9997,在两个气象站的测试期内分别为 0.9987/0.9997。与 SVR-MVO 和 SVR-ALO 模型相比,该混合 SVR-WOA 模型在估计研究区域内的月 ET 方面更合适和高效。