Suppr超能文献

基于音乐的数字疗法:卒中后渐进式个体化基于节奏步行训练方案的概念验证自动化。

A Music-Based Digital Therapeutic: Proof-of-Concept Automation of a Progressive and Individualized Rhythm-Based Walking Training Program After Stroke.

机构信息

Sargent College, Boston University, Boston, MA, USA.

MedRhythms Inc, Portland, ME, USA.

出版信息

Neurorehabil Neural Repair. 2020 Nov;34(11):986-996. doi: 10.1177/1545968320961114. Epub 2020 Oct 10.

Abstract

BACKGROUND

The rhythm of music can entrain neurons in motor cortex by way of direct connections between auditory and motor brain regions.

OBJECTIVE

We sought to automate an individualized and progressive music-based, walking rehabilitation program using real-time sensor data in combination with decision algorithms.

METHODS

A music-based digital therapeutic was developed to maintain high sound quality while modulating, in real-time, the tempo (ie, beats per minute, or bpm) of music based on a user's ability to entrain to the tempo and progress to faster walking cadences in-sync with the progression of the tempo. Eleven individuals with chronic hemiparesis completed one automated 30-minute training visit. Seven returned for 2 additional visits. Safety, feasibility, and rehabilitative potential (ie, changes in walking speed relative to clinically meaningful change scores) were evaluated.

RESULTS

A single, fully automated training visit resulted in increased usual (∆ 0.085 ± 0.027 m/s, = .011) and fast (∆ 0.093 ± 0.032 m/s, = .016) walking speeds. The 7 participants who completed additional training visits increased their usual walking speed by 0.12 ± 0.03 m/s after only 3 days of training. Changes in walking speed were highly related to changes in walking cadence ( > 0.70). No trips or falls were noted during training, all users reported that the device helped them walk faster, and 70% indicated that they would use it most or all of the time at home.

CONCLUSIONS

In this proof-of-concept study, we show that a sensor-automated, progressive, and individualized rhythmic locomotor training program can be implemented safely and effectively to train walking speed after stroke. Music-based digital therapeutics have the potential to facilitate salient, community-based rehabilitation.

摘要

背景

音乐的节奏可以通过听觉和运动大脑区域之间的直接连接来使运动皮层中的神经元同步。

目的

我们旨在通过实时传感器数据与决策算法相结合,实现基于音乐的个体化和渐进式步行康复计划的自动化。

方法

开发了一种基于音乐的数字疗法,以在保持高音质的同时,根据用户对节奏的同步能力和与节奏同步更快的步行节奏进展,实时调整音乐的节奏(即每分钟节拍数或 bpm)。11 名慢性偏瘫患者完成了一次自动化的 30 分钟训练访问。其中 7 人返回进行了另外 2 次访问。评估了安全性、可行性和康复潜力(即与临床有意义的变化分数相比,步行速度的变化)。

结果

单次全自动训练访问可提高常规(∆0.085±0.027m/s, =.011)和快速(∆0.093±0.032m/s, =.016)步行速度。7 名完成额外训练访问的参与者在仅训练 3 天后,其常规步行速度提高了 0.12±0.03m/s。步行速度的变化与步行节奏的变化高度相关( > 0.70)。训练过程中没有出现摔倒或跌倒的情况,所有使用者均表示该设备帮助他们走得更快,且 70%的使用者表示他们将在家中大部分或全部时间使用该设备。

结论

在这项概念验证研究中,我们表明,基于传感器的、渐进的和个体化的节奏性运动训练计划可以安全有效地实施,以提高中风后的步行速度。基于音乐的数字疗法具有促进显著的、基于社区的康复的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验