School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daegu, 41566, Republic of Korea.
KNU Institute for Microorganisms, Kyungpook National University, Daegu, 41566, Republic of Korea.
Biochem Biophys Res Commun. 2020 Dec 17;533(4):1177-1183. doi: 10.1016/j.bbrc.2020.09.136. Epub 2020 Oct 9.
The glyoxylate cycle is an important anabolic pathway and acts under a C compound (such as acetic acid) rich condition in bacteria. The isocitrate lyase (ICL) enzyme catalyzes the first step in the glyoxylate cycle, which is the cleavage of isocitrate to glyoxylate and succinate. This enzyme is a metalo-enzyme that contains an Mg or a Mnion at the active site for enzyme catalysis. We expressed and purified ICL from Bacillus cereus (BcICL) and investigated its biochemical properties and metal usage through its enzyme activity and stability with various divalent metal ion. Based on the results, BcICL mainly utilized the Mg ion for enzyme catalysis as well as the Mn, Ni and Co ions. To elucidate its molecular mechanisms, we determined the crystal structure of BcICL at 1.79 Å. Through this structure, we analyzed a tetrameric interaction of the protein. We also determined the BcICL structure in complex with both the metal and its products, glyoxylate and succinate at 2.50 Å resolution and revealed each ligand binding modes.
乙醛酸循环是一种重要的合成代谢途径,在细菌中 C 化合物(如乙酸)丰富的条件下发挥作用。异柠檬酸裂解酶(ICL)酶催化乙醛酸循环的第一步,即异柠檬酸裂解为乙醛酸和琥珀酸。该酶是一种金属酶,在活性位点含有一个 Mg 或 Mn 离子,用于酶催化。我们从蜡状芽孢杆菌(BcICL)中表达和纯化了 ICL,并通过其酶活性和稳定性研究了其对各种二价金属离子的生化特性和金属利用情况。基于这些结果,BcICL 主要利用 Mg 离子进行酶催化,同时也利用 Mn、Ni 和 Co 离子。为了阐明其分子机制,我们确定了 BcICL 的晶体结构,分辨率为 1.79Å。通过该结构,我们分析了蛋白质的四聚体相互作用。我们还确定了 BcICL 与金属及其产物乙醛酸和琥珀酸的复合物结构,分辨率为 2.50Å,并揭示了每个配体的结合模式。