Senet Patrick
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47 870, F-21078 Dijon Cedex, France.
ACS Omega. 2020 Sep 23;5(39):25349-25357. doi: 10.1021/acsomega.0c03684. eCollection 2020 Oct 6.
In conceptual density functional theory, reactivity indexes as the Fukui function, the global hardness/softness, and hardness/softness kernels are fundamental linear responses extensively studied to predict the nucleophilic and electrophilic propensities of atoms in molecules. We demonstrate that the hardness/softness kernels of an isolated system can be expanded in eigenmodes, solutions of a variational principle. These modes are divided into two groups: the polarization modes and the charging modes. The eigenvectors of the polarization modes are orthogonal to the Fukui function and can be interpreted as densities induced at a constant chemical potential. The charging modes of an isolated system are associated with virtual charge transfers weighted by the Fukui function and obey an exact nontrivial sum rule. The exact relation between these charging eigenmodes and those of the polarizability kernel is established. The physical interpretation of the modes is discussed. Applications of the present findings to the Thomas-Fermi and von Weizacker kinetic energy functionals are presented. For a confined free quantum gas, described by the von Weizacker kinetic energy functional, we succeed to derive an approximate analytical solution for the Fukui function and for hardness/softness and polarizability kernels. Finally, we indicate how numerical calculations of the hardness kernel of a molecule could be performed from the Kohn-Sham orbitals.
在概念密度泛函理论中,诸如福井函数、全局硬度/软度以及硬度/软度核等反应性指标是广泛研究的基本线性响应,用于预测分子中原子的亲核和亲电倾向。我们证明,孤立系统的硬度/软度核可以在本征模式(变分原理的解)中展开。这些模式分为两组:极化模式和电荷模式。极化模式的本征向量与福井函数正交,并且可以解释为在恒定化学势下诱导的密度。孤立系统的电荷模式与由福井函数加权的虚拟电荷转移相关联,并服从一个精确的非平凡求和规则。建立了这些电荷本征模式与极化率核的本征模式之间的精确关系。讨论了这些模式的物理解释。给出了本研究结果在托马斯 - 费米和冯·魏茨泽克动能泛函中的应用。对于由冯·魏茨泽克动能泛函描述的受限自由量子气体,我们成功地推导出了福井函数以及硬度/软度和极化率核的近似解析解。最后,我们指出如何从科恩 - 沈轨道进行分子硬度核的数值计算。