Suppr超能文献

基于点的风险计算器预测术后发生脓毒症患者的死亡率。

A Point-Based Risk Calculator Predicting Mortality in Patients That Developed Postoperative Sepsis.

机构信息

Department of Anesthesiology, University of California, San Diego, CA, USA.

Division of Biomedical Informatics, University of California, San Diego, CA, USA.

出版信息

J Intensive Care Med. 2021 Dec;36(12):1443-1449. doi: 10.1177/0885066620960991. Epub 2020 Oct 12.

Abstract

BACKGROUND

Predicting the mortality from post-operative sepsis remains a continuing problem. We built a statistical model using national data to predict mortality in patients who developed post-operative sepsis.

METHODS

This is a retrospective study using the American College of Surgeons National Quality Surgical Improvement Program database, in which we gathered data from adult patients between 2011 and 2016 who experienced postoperative sepsis. We designed a predictive model using multivariable logistic regression on a training set and validated the model on a separate test set.

RESULTS

There were 128,325 patients included in the final dataset, in which 18,499 (14.4%) died within 30-days of surgery. The model consisted of 10 covariates: American Society of Anesthesiologists Physical Status classification score, preoperative sepsis, age, chronic obstructive pulmonary disease, postoperative myocardial infarction, postoperative stroke, postoperative acute renal failure, transfusion requirement, and infection type. A point-based risk calculator was developed, which had an area under the receiver operating characteristics curve of 0.819 (95% confidence interval 0.814-0.823).

CONCLUSION

Although further work is needed to confirm and validate our model on external datasets, our scoring system provides a novel way to measure mortality in septic post-operative patients.

摘要

背景

预测术后脓毒症患者的死亡率仍然是一个持续存在的问题。我们使用国家数据建立了一个统计模型,以预测发生术后脓毒症的患者的死亡率。

方法

这是一项回顾性研究,使用美国外科医师学会国家质量手术改进计划数据库,我们从 2011 年至 2016 年经历术后脓毒症的成年患者中收集数据。我们在训练集上使用多变量逻辑回归设计预测模型,并在单独的测试集上验证模型。

结果

最终数据集共纳入 128325 例患者,其中 18499 例(14.4%)在手术后 30 天内死亡。该模型由 10 个协变量组成:美国麻醉师协会身体状况分类评分、术前脓毒症、年龄、慢性阻塞性肺疾病、术后心肌梗死、术后中风、术后急性肾衰竭、输血需求和感染类型。开发了一种基于点的风险计算器,其接受者操作特征曲线下面积为 0.819(95%置信区间 0.814-0.823)。

结论

尽管需要进一步的工作来在外部数据集上确认和验证我们的模型,但我们的评分系统为衡量术后脓毒症患者的死亡率提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验