Suppr超能文献

用于具有双变量终点的临床试验的分组序贯设计。

Group sequential designs for clinical trials with bivariate endpoints.

机构信息

Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.

Departments of Pediatrics and Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

Stat Med. 2020 Nov 20;39(26):3823-3839. doi: 10.1002/sim.8696. Epub 2020 Aug 10.

Abstract

Although all clinical trials are designed and monitored using more than one endpoint, methods are needed to assure that decision criteria are chosen to reflect the clinically relevant tradeoffs that assure the trial's scientific integrity. This article presents a framework for the design and monitoring clinical trials in a bivariate outcome space. The framework uses a rectangular hyperbola to define a bivariate null curve that divides outcome space into regions of benefit and lack of benefit. The curve is shown to be a flexible mapping of bivariate space that allows a continuous tradeoff between the two endpoints in a manner that captures many previous bivariate designs. The curve is extended to a distance function in bivariate space that allows different decisions in each of the four quadrants that comprise bivariate space. The distance function forms a statistic ( ); the distribution of its estimate is derived and used as a basis for trial design and group sequential monitoring plans in bivariate space. A recursive form of the bivariate group sequential density is used to evaluate and control operating characteristics for the proposed design. The bivariate designs are shown to meet or exceed the usual standards for size and power. The proposed design is illustrated in the ongoing NHLBI-sponsored Kids-DOTT multinational randomized controlled trial comparing shortened versus conventional anticoagulation for the treatment of venous thromboembolism in patients less than 21 years of age. The proposed methods are broadly applicable to a wide range of clinical settings and trial designs.

摘要

虽然所有临床试验都是使用多个终点设计和监测的,但需要有方法来确保选择的决策标准能够反映出保证试验科学性的临床相关权衡。本文提出了一种在双变量结果空间中设计和监测临床试验的框架。该框架使用矩形双曲线定义双变量零曲线,将结果空间划分为受益和无受益区域。该曲线被证明是双变量空间的一种灵活映射,允许以一种方式在两个终点之间进行连续的权衡,从而捕获许多以前的双变量设计。该曲线扩展到双变量空间中的距离函数,允许在构成双变量空间的四个象限中的每一个中做出不同的决策。距离函数形成一个统计量( );其估计值的分布被推导出来,并用作双变量空间中试验设计和组序贯监测计划的基础。双变量组序贯密度的递归形式用于评估和控制所提出设计的操作特性。双变量设计符合或超过通常的大小和功效标准。所提出的设计在正在进行的 NHLBI 赞助的 Kids-DOTT 多中心随机对照试验中得到了说明,该试验比较了缩短与常规抗凝治疗在年龄小于 21 岁的患者中的治疗静脉血栓栓塞症的效果。所提出的方法广泛适用于各种临床环境和试验设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验