Suppr超能文献

使用聚类和概率摘要对大型多元散射数据进行可视化分析

Visual Analysis of Large Multivariate Scattered Data using Clustering and Probabilistic Summaries.

作者信息

Rapp Tobias, Peters Christoph, Dachsbacher Carsten

出版信息

IEEE Trans Vis Comput Graph. 2021 Feb;27(2):1580-1590. doi: 10.1109/TVCG.2020.3030379. Epub 2021 Jan 28.

Abstract

Rapidly growing data sizes of scientific simulations pose significant challenges for interactive visualization and analysis techniques. In this work, we propose a compact probabilistic representation to interactively visualize large scattered datasets. In contrast to previous approaches that represent blocks of volumetric data using probability distributions, we model clusters of arbitrarily structured multivariate data. In detail, we discuss how to efficiently represent and store a high-dimensional distribution for each cluster. We observe that it suffices to consider low-dimensional marginal distributions for two or three data dimensions at a time to employ common visual analysis techniques. Based on this observation, we represent high-dimensional distributions by combinations of low-dimensional Gaussian mixture models. We discuss the application of common interactive visual analysis techniques to this representation. In particular, we investigate several frequency-based views, such as density plots in 1D and 2D, density-based parallel coordinates, and a time histogram. We visualize the uncertainty introduced by the representation, discuss a level-of-detail mechanism, and explicitly visualize outliers. Furthermore, we propose a spatial visualization by splatting anisotropic 3D Gaussians for which we derive a closed-form solution. Lastly, we describe the application of brushing and linking to this clustered representation. Our evaluation on several large, real-world datasets demonstrates the scaling of our approach.

摘要

科学模拟中快速增长的数据规模给交互式可视化和分析技术带来了重大挑战。在这项工作中,我们提出了一种紧凑的概率表示法,用于交互式地可视化大型离散数据集。与以往使用概率分布来表示体数据块的方法不同,我们对任意结构的多变量数据簇进行建模。具体而言,我们讨论了如何有效地表示和存储每个簇的高维分布。我们发现,每次只需考虑两到三个数据维度的低维边际分布,就可以采用常见的视觉分析技术。基于这一观察结果,我们通过低维高斯混合模型的组合来表示高维分布。我们讨论了常见的交互式视觉分析技术在这种表示法上的应用。特别是,我们研究了几种基于频率的视图,如1D和2D密度图、基于密度的平行坐标以及时间直方图。我们可视化了该表示法引入的不确定性,讨论了细节层次机制,并明确可视化了异常值。此外,我们提出了一种通过绘制各向异性3D高斯来进行空间可视化的方法,并为此推导出了一个闭式解。最后,我们描述了刷选和链接在这种聚类表示法上的应用。我们对几个大型真实世界数据集的评估展示了我们方法的可扩展性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验