Suppr超能文献

使用矩阵变量分布的块稀疏变分贝叶斯回归及其在稳态视觉诱发电位检测中的应用

Block Sparse Variational Bayes Regression Using Matrix Variate Distributions With Application to SSVEP Detection.

作者信息

Sharma Shruti, Chaudhury Santanu

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Jan;33(1):351-365. doi: 10.1109/TNNLS.2020.3027773. Epub 2022 Jan 5.

Abstract

Due to the nonsparse representation, the use of compressed sensing (CS) for physiological signals, such as a multichannel electroencephalogram (EEG), has been a challenge. We present a generalized Bayesian CS framework that is capable of handling representations that arise in the spatiotemporal setting. The proposed model utilizes the standard linear Gaussian observation model associated with the hierarchical modeling of data using the matrix-variate Gaussian scale mixture (GSM). It deploys various random and deterministic parameters to incorporate the knowledge of spatial and temporal correlation present in data. By varying distributions over random parameters, a family of generalized hyperbolic matrix variate distributions is derived. For estimation, we rely on variational Bayes (VB) for random parameters and expectation-maximization (EM) for deterministic parameters. Furthermore, the model is compared with recent developments in matrix-variate distribution-based modeling of data, and we briefly discuss its extension to finite mixtures of skewed distributions. Finally, the framework is applied to the steady-state visual evoked potential (SSVEP)-based EEG benchmark data set, and a comparative study is conducted to show its effectiveness for the frequency detection task. One of the crucial features of the proposed model is that it simultaneously processes multichannel signals with low computational cost and time, making it suitable for real-time systems, especially in a resource-constrained environment.

摘要

由于非稀疏表示,将压缩感知(CS)用于生理信号(如多通道脑电图(EEG))一直是一项挑战。我们提出了一个广义贝叶斯CS框架,该框架能够处理时空设置中出现的表示。所提出的模型利用与使用矩阵变量高斯尺度混合(GSM)对数据进行分层建模相关的标准线性高斯观测模型。它部署了各种随机和确定性参数,以纳入数据中存在的空间和时间相关性知识。通过改变随机参数上的分布,导出了一族广义双曲矩阵变量分布。对于估计,我们对随机参数依赖变分贝叶斯(VB),对确定性参数依赖期望最大化(EM)。此外,将该模型与基于矩阵变量分布的数据建模的最新进展进行了比较,并简要讨论了其对偏态分布有限混合的扩展。最后,将该框架应用于基于稳态视觉诱发电位(SSVEP)的EEG基准数据集,并进行了对比研究以展示其在频率检测任务中的有效性。所提出模型的一个关键特性是它能够以低计算成本和时间同时处理多通道信号,使其适用于实时系统,特别是在资源受限的环境中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验